

Updates on Gynecologic Malignancies

Emese Zsiros MD PhD

Department of Gynecologic Oncology
Center for Immunotherapy
Roswell Park Comprehensive Cancer Center
October 5th 2019

Disclosures

Advisory board: Iovance

• Research funding: Merck

Overview

- Ovarian cancer
 - Updates on frontline treatment
- Endometrial cancer
 - New approved treatment option
- Cervical cancer
 - New results from emerging clinical trials

First-Line Treatment in Advanced Ovarian Cancer (AOC):

Facts and Figures

- Platinum and Paclitaxel are the two main drugs that have been in standard use for over 20 years.
- Over recent decades, the 5-year OS of women with AOC has improved but largely due to more treatment lines rather than better first-line therapy.

What is happening in the front line maintenance setting?

- In 2011,two key front-line trials incorporating BVZ (GOG#218 and ICON-7) showed a global benefit in both
 - PFS and OS in selected populations: These trials led to a new SOC in first-line therapy.
 - GOG#218: PFS HR:0.72 (95% CI, 0.63 to 0.82; P<0.001). OS (Stage IV) HR 0.75 (95% CI, 0.59 to 0.95)
 - ICON-7: PFS HR:0.81 (95% CI, 0.70 to 0.94; P=0.004). OS (High -Risk) HR 0.78 (95% CI, 0.63 to 0.97)
- Additionally, the GOG#218 has broadened knowledge:
 - Clearly confirmed the prognostic impact of BRCA mut in OS.
 - There is no evidence that BRCAmut predicts BVZ activity alongside paclitaxel/carboplatin.

PDS, primary debulking surgery; NACT, neoadjuvant chemotherapy; IDS, Interval Debulking Surgery; BVZ, Bevacizumab; PFS, Progression Free Survival; OS. Overall Survival; SOC, Standard of care; Cl, confidence interval; HR, hazard ratio

In the last 12 months.

Clinical Debate

VS.

DEFINE THE CHALLENGE

General assumption 1: HR deficiency = PARP inhibitor sensitivity

Adapted from Konstantinopoulos et al, Canc Disc 2015 and Patch et al, Nature 2015

^{*}Source: ClinicalTrials.gov. EMA, European Medicines Agency; FDA, Food and Drug Administration; PARP, poly ADP-ribose polymerase.

^{1.} Kraus WL. Mol Cell. 2015;58:902-910; 2. Chambon P, et al. Biochem Biophys Res Commun. 1966;25:638-643; 3. Plummer R, et al. Clin Cancer Res. 2008;14:7917-7923;

^{4.} Fong PC, et al. N Engl J Med. 2009:361:123-134; 5. Audeh MW, et al. Lancet. 2010;376:245-251; 6. Tutt A, et al. Lancet. 2010;376:235-244; 7. Bang Y-J, et al. Ann Oncol. 2016;27:abst 2742; 8. Mirza MR, et al. N Engl J Med. 2016;375(22):2154-2164.

PARP inhibitors - The last decade

- Initial licence for olaparib as maintenance therapy in recurrent high grade serous BRCA^{mut} ovarian cancer following response to platinum-based therapy
- FDA monotherapy licence in BRCA^{mut} ovarian cancer after ≥ 3 lines of treatment
- Licence for maintenance extended to all recurrent high-grade ovarian cancers irrespective of BRCA status responding to platinum-based therapy niraparib (NOVA), olaparib (SOLO2/Study 19) and rucaparib (ARIEL3)

What have we learnt from PARPi studies in OC platinum sensitive recurrent setting?

- Three randomized phase 3 trials have shown that, in those patients who had achieved a PR or CR following platinum therapy, PARPi agents (O,N,R) as a maintenance therapy significantly improve PFS compared to placebo.
- In this setting, O,N,R are approved by the Regulatory Agencies (EMA & FDA) regardless of BRCA 1/2 and HRD status.

OC, Ovarian Cancer, PSR, Platinum Sensitive Recurrence;O, Olaparib; N, Niraparib, R, Rucaparib; gBRCA, germline BRCA; BRCA mut, BRCA1 and/or BRCA2 mutation;HRD, Homologous Recombination Deficiency

^{*}Forest plot adapted from:Coleman RL. et al. The Lancet, Vol.390, N°10106, p1949-1961; Mirza MR. et al. N Engl J Med. 2016;375(22):2154-2164; Pujade-Lauraine E. et al Lancet Oncol. 2017 Sep;18(9):1274-1284;

LAST YEAR.....

SOLO1: Olaparib maintenance therapy after front-line treatment in women with *BRCA*^{mut} **OC**

- Newly diagnosed, FIGO stage III–IV, high-grade serous or endometrioid ovarian, primary peritoneal or fallopian tube cancer
- Germline or somatic BRCAm
- ECOG performance status 0–1
- Cytoreductive surgery*
- In clinical complete response or partial response after platinumbased chemotherapy

- Study treatment continued until disease progression
- Patients with no evidence of disease at 2 years stopped treatment
- Patients with a partial response at 2 years could continue treatment

Primary endpoint

 Investigator-assessed PFS (modified RECIST 1.1)

Secondary endpoints

- PFS using BICR
- PFS2
- Overall survival
- Time from randomization to first subsequent therapy or death
- Time from randomization to second subsequent therapy or death
- HRQoL (FACT-O TOI score)

2 years' treatment if no evidence of disease

SOLO-1: Progression-free survival by investigator assessment

After a median follow-up of 41 months, the median PFS had not been reached in the olaparib arm (vs. 13.8 months in the placebo arm)^{1,2}

- In 2018,in the Phase-3 trial **SOLO-1**, **the PARPi O**, provided an unprecedented benefit in PFS for newly-diagnosed AOC pts whose tumors harbor a **BRCAmut**: **PFS HR 0.30** (95% CI, 0.23 to 0.41; P<0.001). **These results led to a new SOC for this group of AOC pts**.
- Significant benefit in PFS. PFS2 shows that 60% women on olaparib are free of progression at 48 months a 36 month difference in time to subsequent treatment
- Early testing for BRCA mutations needed if decisions between bevacizumab and olaparib are needed

WHERE DO WE STAND WITH PARP INHIBITORS FOR OVARIAN CANCER TREATMENT IN OCTOBER 2019?

Niraparib therapy in Patients with Newly-Diagnosed Advanced Ovarian Cancer: PRIMA/ENGOT-Ov26/GOG-3012 Study

Olaparib plus Bevacizumab as maintenance therapy in Patients with Newly-Diagnosed Advanced Ovarian Cancer: **PAOLA-1/ENGOT-Ov25 Trial**

VELIA/GOG-3005: Integration of veliparib with front-line chemotherapy and maintenance in women with high-grade serous carcinoma of ovarian, fallopian tube, or primary peritoneal origin

A Paradigm Shift in the First-Line Treatment for Advanced Ovarian Cancer Patients?

Niraparib Therapy in Patients With Newly-Diagnosed Advanced Ovarian Cancer

(PRIMA/ENGOT-OV26/GOG-3012)

A. González-Martín, ¹ B. Pothuri, ² I. Vergote, ³ R.D. Christensen, ⁴ W. Graybill, ⁵ M.R. Mirza, ⁶ C. McCormick, ⁷ D. Lorusso, ⁸ P. Hoskins, ⁹ G. Freyer, ¹⁰ F. Backes, ¹¹ K. Baumann, ¹² A. Redondo, ¹³ R. Moore, ¹⁴ C. Vulsteke, ¹⁵ R.E. O'Cearbhaill, ¹⁶ B. Lund, ¹⁷ Y. Li, ¹⁸ D. Gupta, ¹⁸ B.J. Monk ¹⁹

¹Grupo Español de Investigación en Cáncer de Ovario (GEICO), Medical Oncology Department, Clínica Universidad de Navarra, Madrid, Spain; ²Gynecologic Oncology Group (GOG), Department of Obstetrics/Gynecology, Perlmutter Cancer Center, NYU Langone Cancer Center, New York, NY, USA; ³Belgium and Luxembourg Gynaecological Oncology Group (BGOG), Department of Gynaecology and Obstetrics, Division of Gynaecologic Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium; ⁴Nordic Society of Gynaecological Oncology (NSGO), Research Unit of General Practice, Institute of Public Health, University of Southern Denmark, Odense, Denmark; ³GOG, Gynecologic Oncology, Medical University of South Carolina, Charleston, SC, USA; ⁵NSGO, Rigshospitalet–Copenhagen University Hospital, Copenhagen, Denmark; ³GOG, Legacy Medical Group Gynecologic Oncology, Portland, OR, USA; ⁵Multicentre Italian Trials in Ovarian Cancer and Gynecologic Malignancies (MITO), Fondazione IRCCS National Cancer Institute of Milan, Italy; ³US Oncology Research (USOR), Department of Medical Oncology, BC Cancer – Vancouver, Vancouver, BC, Canada; ¹¹Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens (GINECO), HCL Cancer Institute Department of Medical Oncology Lyon University, Lyon, France; ¹¹Division of Gynecologic Oncology, Ohio State University, Columbus, OH, USA; ¹²Arbeitsgemeinschaft Gynäkologische Onkologie (AGO), Department of Gynecology and Obstetrics, Klinikum der Stadt Ludwigshafen, Germany; ¹³GEICO, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain; ¹⁴USOR, Division of Gynecology, Wilmot Cancer Institute, Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA; ¹⁵BGOG, Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, and Department of Medicine, Weill Cornell Medical College, New York, NY, USA; ¹³NisGo, Department of Oncology, Alborg University, Anlborg, Denmark; ¹³ETSARO: A GSK Company, Waltham, MA, USA; ¹³Arizona Oncology (US Oncology Network), University of A

PRIMA Trial Design

PRIMA Primary Endpoint, PFS Benefit in the HR-deficient Population

57% reduction in hazard of relapse or death with niraparib			
	Niraparib (n=247)	Placebo (n=126)	
Median PFS			
months	21.9	10.4	
(95% CI)	(19.3–NE)	(8.1–12.1)	
Patients without PD or death (%)			
6 months	86%	68%	
12 months	72 %	42%	
18 months	59%	35%	

PRIMA Primary Endpoint, PFS Benefit in the Overall Population

38% reduction in hazard of relapse or death with niraparib			
	Niraparib (n=487)	Placebo (n=246)	
Median PFS			
months	13.8	8.2	
(95% CI)	(11.5–14.9)	(7.3–8.5)	
Patients without PD or death (%)			
6 months	73%	60%	
12 months	53%	35%	
18 months	42%	28%	

1L, first-line; CI, confidence interval; CT, chemotherapy; PD, progressive disease; PFS, progression-free survival.

Discordance in PFS event between investigator assessment vs BICR ≈12%.

PRIMA PFS Benefit in Biomarker Subgroups

Homologous Recombination Deficient (HRd)

- Niraparib provided similar clinical benefit in the HRd subgroups (BRCAmut and BRCAwt)
- Niraparib provide clinically significant benefit in the HR-proficient subgroup with a 32% risk reduction in progression or death

PRIMA Safety and Patient-Reported Outcomes (PRO)

- No new safety signals were identified for niraparib
- Most common TEAE was reversible myelosuppression
- One patient was diagnosed with MDS after 9 months of niraparib treatment

Phase III PAOLA-1/ENGOT-ov25: maintenance olaparib with bevacizumab in patients with newly-diagnosed, advanced ovarian cancer treated with platinum-based chemotherapy and bevacizumab as standard of care

<u>Isabelle Ray-Coquard</u>, Patricia Pautier, Sandro Pignata, David Pérol, Antonio González-Martin, Paul Sevelda, Keiichi Fujiwara, Ignace Vergote, Nicoletta Colombo, Johanna Mäenpää, Frédéric Selle, Jalid Sehouli, Domenica Lorusso, Eva Maria Guerra Alia, Claudia Lefeuvre-Plesse, Ulrich Canzler, Alain Lortholary, Frederik Marmé, Eric Pujade-Lauraine, Philipp Harter

esmo.org

ClinicalTrials.gov identifier: NCT02477644
This study was sponsored by ARCAGY Research

PAOLO-1 Study design

Newly-diagnosed FIGO stage III–IV high-grade serous/endometrioid ovarian, fallopian tube or primary peritoneal cancer*

*Patients with other epithelial non-mucinous ovarian cancer were eligible if they had a germline *BRCA1* and/or *BRCA2* mutation

†Bevacizumab: 15 mg/kg, every 3 weeks for a total of 15 months, including when administered with chemotherapy; ‡By central labs; ¶According to timing of surgery and NED/CR/PR

BICR, blinded independent central review; HRQoL, health-related quality of life; PFS2, time to second progression or death; RECIST, Response Evaluation Criteria in Solid Tumours;

TFST, time to first subsequent therapy or death; TSST, time to second subsequent therapy or death

PAOLA-1:PFS by investigator assessment: ITT population

Median time from first cycle of chemotherapy to randomization = 7 months

PAOLA1: PFS by HRD status

HRD-positive, including tBRCA (48%)

	Olaparib + bevacizumab (N=97)	Placebo + bevacizumab (N=55)
Events, n(%)	43 (44)	40 (73)
Median PFS, months	28.1	16.6
	HR 0.43	
	95% CI 0.28-0.66	

Events, n(%)
Median PFS, months

	Olaparib + bevacizumab (n=282)	Placebo + bevacizumab (n=137)
	193 (68)	102 (74)
;	16.9	16.0
	HR 0.92	
	95% CI 0.72-1.17	

HRD-positive is an HRD score ≥42

*based on Kaplan-Meier estimates

Most common AEs

*Grouped terms. All-grade thrombocytopenia (grouped term) occurred in 8% of patients in the olaparib group and 3% of patients in the placebo group, grade ≥3 thrombocytopenia occurred in 2% of patients in the olaparib group and <1% of patients in the placebo group

VELIA/GOG-3005: Integration of veliparib with front-line chemotherapy and maintenance in women with high-grade serous carcinoma of ovarian, fallopian tube, or primary peritoneal origin

Robert L. Coleman¹, Gini F. Fleming², Mark F. Brady³, Elizabeth M. Swisher⁴, Karina D. Steffensen⁵, Michael Friedlander⁶, Aikou Okamoto⁷, Kathleen N. Moore⁸, Noa Ben-Baruch⁹, Theresa L. Werner¹⁰, Ana Oaknin¹¹, Joo-Hyun Nam¹², Charles A. Leath III¹³, Shibani Nicum¹⁴, David Cella¹⁵, Danielle M. Sullivan¹⁶, Peter J. Ansell¹⁶, Minh H. Dinh¹⁶, Carol Aghajanian¹⁷, Michael A. Bookman¹⁸

¹The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA; ²The University of Chicago Medicine, Chicago, IL, USA; ³NRG Oncology Statistical and Data Center, Roswell Park Cancer Institute, Buffalo, NY, USA; ⁴University of Washington, Seattle, Washington, USA; ⁵Vejle University Hospital of Southern Denmark, Vejle, Denmark; ⁶Prince of Wales Clinical School UNSW and Prince of Wales Hospital, Sydney, Australia; ⁷The Jikei University School of Medicine, Tokyo, Japan; ⁸Stephenson Cancer Center at the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; ⁹Kaplan Medical Center, Rehovot, Israel; ¹⁰Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA; ¹¹Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, Spain; ¹²University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea; ¹³University of Alabama at Birmingham, Birmingham, AL, USA; ¹⁴Oxford University Hospitals, Oxford, United Kingdom; ¹⁵Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA; ¹⁶AbbVie Inc., North Chicago, IL, USA; ¹⁷Memorial Sloan Kettering Cancer Center, New York, NY, USA; ¹⁸Kaiser Permanente Northern California, San Francisco, CA, USA

esmo.org

Study Design: VELIA/GOG-3005 (NCT02470585)

Patient Population

- High-Grade Serous Cancer
- FIGO Stage III or IV
- No prior systemic therapy
- ECOG 0 to 2
- No CNS metastases

Stratification Factors

- Stage of Disease
- Region
- Primary vs Interval Cytoreduction
- Residual Disease
- Chemotherapy Regimen*
- gBRCA Status **
- * Carboplatin AUC 6 Q3W + Paclitaxel 80 mg/m²QW or 175 mg/m² Q3W
- ** Added as stratification factor ~14 months after trial initiation due to noted imbalance

Measured from start of combination therapy

VELIA PFS by Investigator Assessment

ITT Population Veliparib-throughout Control 100-237/375 191/382 **Events** Patients Free from Disease (%) (50.0)(63.2)Progression or Death (%) 23.5 17.3 Median PFS, 80-(19.3, 26.3)(15.1, 19.1)months (95% CI) 60-40-HR 0.68 20-95% CI [0.56-0.83], P<0.001 18 20 22 30 32 2 8 12 24 26 28 34 36 38 10 16 0 **Months from Randomization** No. at Risk Control 55 Veliparib- 382 352 337 308 208 192 throughout

Median duration of follow-up was 28 months at the time of database lock.

Median duration of follow-up was 28 months at the time of database lock.

VELIA subsets by BRCAmut and HRD

PFS for Veliparib-combo-only vs. Control

Across *BRCA*m, HRD, and ITT, the veliparib-combo-only arm and the control arm demonstrated similar PFS

Summary of Adverse Events

	Veliparib-throughout N = 377	Veliparib-combo-only N = 376	Control N = 371
Any Treatment-Emergent AE	377 (100)	376 (100)	371 (100)
Grade 3 or 4 AEs	332 (88)	329 (88)	285 (77)
Serious AEs	141 (37)	129 (34)	141 (38)
AEs Leading to Discontinuation of Veliparib/Placebo	97 (26)	49 (13)	43 (12)
Related to Disease Progression	6 (2)	11 (3)	18 (5)
Not Related to Disease Progression (Combination: Cycles 1-6)	40 (11)	29 (8)	22 (6)
Not Related to Disease Progression (Maintenance: Cycles 7-36) *	53 (14)	9 (3)	3 (1)
AEs Leading to Death	8 (2)	7 (2)	6 (2)

^{*} Most discontinuations of veliparib occurred during Cycles 7-8

What is the position of PARPi in first-line treatment of ovarian cancer from October 2019?

- Clear evidence of benefit of PARP inhibitor maintenance in first line therapy in intention to treat populations
 - -Olaparib
 - -Niraparib
 - -Veliparib
- Greatest effect seen in women with BRCA^{mut}

Olaparib (SOLO1)	HR 0.30
Olaparib (PAOLA-1)	HR 0.31
Niraparib(PRIMA)	HR 0.40
Veliparib (VELIA)	HR 0.44

• Diminishing effect from BRCA^{mut} > BRCA^{wt}/HRD⁺ > HRD⁻

1. Is the benefit of adding a PARPi as maintenance therapy to first-line treatment clinically meaningful enough to justify its use as a new standard of care?

Yes, but while the benefit is clinically meaningful in the overall population, we should consider PFS outcomes according to the Biomarker status in the selection of optimal therapy:

Companion Diagnostic Test will be needed.

- 1. Is the benefit of adding a PARPi as maintenance therapy to first-line treatment clinically meaningful enough to justify its use as a new standard of care?
- HRD BRCA mut: The greatest magnitude of benefit (from O plus BVZ and N)confirming PARPi as first-line.
 - The key question: What is the contribution of BVZ to the benefit observed in PAOLA since it was consistent with the benefit observed in the SOLO-1 with O monotherapy?
 - PAOLA's weakness: Lack of an O monotherapy arm.
 - PFS's benefit: Addition of O or a synergistic effect of the combination? The latter seems not be supported by previous Phase-2 studies¹.

HRD BRCA wt:

 The results in HRD without a BRCA mutation identify a new population which significantly benefits from treatment with O plus BEV and N.

3. Can we hypothesize which sequence of therapies is the best for our patients?

- In the HRD population (BRCA mut and BRCA wt). There is a robust reduction of risk of progression with O plus BVZ and N that strongly justify moving PARPi to first line.
 - The only opportunity to "cure" our AOC pts is with the first-line therapy.
 - o Previous data suggest that prior PARPi treatment does not compromise subsequent therapy benefits^{1,2}.
 - COST: How much would be the cost of the combination compared to N or O alone? Should this matter in the clinical decision-making process?
 - BVZ use at relapse is only approved for those pts who have not previously received BVZ. The benefit at first-line and at relapse should be taken into account.

4. Are there any toxicity concerns about the use of O plus BVZ or N in first-line therapy?

- Globally, the reported toxicity profile was as expected: Class specific AEs.
- In PAOLA-1, the AEs leading to treatment discontinuation was 20%: this is the highest figure reported across PARPi trials¹.
- The incidence of MDS/AML/AA reported was aligned with previous trials: 6 cases (1.1 %) in PAOLA-1 and 1 case in PRIMA.
- There was no impact in quality of life with Niraparib or Olaparib plus BVZ.

What next?

- Moving PARP inhibitors to first-line for all or subset BRCA/ HRD +ve?
- How will first-line PARP inhibitors impact on use in recurrent disease?
- Can patients benefit from a rechallenge with same or different PARP inhibitor?

Last year front-line use of a PARP inhibitor in BRCA mutated ovarian cancer heralded a change. In 2019 new front-line data introduces a paradigm shift in PARP inhibitor use with a major improvement in progression-free survival of ovarian cancer

Low Grade Serous Ovarian Cancer

LOW GRADE SEROUS OVARIAN CANCER

- 10% serous ovarian cancers
- May arise de novo or following diagnosis of serous borderline tumour
- Characteristics in comparison to High grade OC
 - Younger age at diagnosis
 - Chemoresistance
 - Longer survival
 - Aberrations within the MAP kinase signalling pathway

Median survival: SEER data

From Plaxe et al Am J Obstet & Gynecol 2008

RECURRENT LOW GRADE SEROUS OVARIAN CANCER

Responds poorly to chemotherapy

	ORR	SD	Number
Carboplatin	3	15	25
PLD	0	11	21
Paclitaxel	1	11	18
Carbo/Paclitaxel	0	7	10
Topotecan	0	5	10
Carbo/ Gemcitabine	0	1	1
Percentage	5%	59%	N=85

Gershenson et al Gyne Oncol 2009

Kurman & Shih 2011

STANDARD THERAPY FOR LOW GRADE SEROUS CANCER

Gershenson et. al...

Control arm

Drug	Response Rate %
Letrozole	13.6
Tamoxifen	0
Paclitaxel	9.1
PLD	2.5
Topotecan	0

- Low response rate to chemotherapy
- Highest response rate in patients on letrozole
- Stable disease rate (8 weeks) 70.8 %
- Med duration of Response 5.9 (2.8-12.2) months
- Median PFS 7.2 (5.6-9.9) months
- 48% ≥ 3 prior lines of treatment

Despite the poor response rate, progression relatively slow

This disease has a long natural history - Where in the pathway of disease were these patients treated?

Study Design

TREMETANIB IN LGSOC

	Trametinib	Control (SOC)
Median (Months) 95% CI	13.0 (9.9 – 15.0)	7.2 (5.6 - 9.9)
Hazard Ratio 95% CI	0.48 (0.36 – 0.64)	
One-sided p-value	<0.0001	

	Trametinib	Control (SOC)
Median (Months) 95% CI	37.0 (30.3 to NE)	29.2 (23.5 to 51.6)
Hazard Ratio 95% CI	0.75 (0.51 – 0.1.11)	
One-sided p-value	0.054	

- Significant benefit in PFS
- Borderline OS benefit but cross over in 68%
- In cross-over patients
 Trametinib is active
 median PFS10.8 months
- Skin rash; Fatigue; diarrhoea
- 35% stopped due to AE
- Cardiac function; pneumonitis?

A NEW TREATMENT FOR LGSOC?

- Recurrent low grade serous ovarian cancer <u>responds very poorly</u> to chemotherapy
- It has a long natural history, so evaluation of disease stabilisation with interventions can be difficult
- Trametinib led to a significant improvement in PFS
- Side effects were mostly low grade but 35 % discontinued due to AE/complication
- How would trametinib have compared to a letrozole control arm- the drug with the highest RR?
- This is the first positive randomised trial in LGCS and demonstrates that trametinib is a new treatment for LGSOC
 - Need to identify which patients benefit from MEK inhibitors
 - When trametinib should be used
 - How to manage common toxicities rash, fatigue, diarrhea, and nausea

Updates on uterine and cervical cancer

Recurrent/Persistent and Metastatic cervical cancer: A HIGH UNMET CLINICAL NEED!

OS, overall survival

- Metastatic and recurrent CC has a median survival of 17 months with standard-ofplatinum/taxane-based care frontline chemotherapy and bevacizumab
- No standard second line available: very options including limited effective gemcitabine, vinorelbine, topotecan, pemetrexed

GOG-0240: final OS analysis Addition of Bevacizumab to chemotherapy

Lancet. 2017 Oct 7;390(10103):1654-1663.

Is Immunotherapy a rational option in cervical cancer?

Eskander RN, et al. Clin Ther. 2015;37(1):20-38.

LBA62

Rationale: Anti-programmed death (PD)-1 therapy for cervical cancer

- Human papillomavirus (HPV) infection is the cause of more than 90% of cervical cancers
- HPV+ Tumor Microenvironment is enriched for PD-1+ CD8+ T Cells
- PD-L1 is significantly up-regulated in cervical cancer and detectable by immunohistochemistry in tumor cells:
 - Squamous Cervical cancer between 54%-80% according to different series
 - . Adenocarcinoma: 14%

LBA62

Checkpoint Inhibitors in Cervical Cancer

	Lheureux et al.¹	KEYNOTE-028 ²	KEYNOTE-158³ (Cohort E)♭	Checkmate 358⁴
Phase(s)	2	1b	2	1/2
Population	Metastatic or recurrent cervical cancer with progression after prior platinum chemotherapy	PD-L1+ advanced cervical squamous cell cancers after failure of prior systemic therapy	Advanced cervical cancer with progression on or intolerance to ≥1 line of prior therapy, PD-L1+ (CPS ≥1)	HPV-associated tumors, including recurrent or metastatic cervical, vaginal, vulvar cancers
Patients, n	42 ª	24	77 d	24
Treatment	lpilimumab	Pembrolizumab	Pembrolizumab	Nivolumab
ORR, %	8.8°	12.5∘	14.3	ITT: 20.8∘ Cervical cancer pts: 26.3%
DCR, %	32.3	25.0	_	70.8
mDOR	-	19.3 wk	NR (range: 4.1–18.6+mo)	NR
PFS	mPFS: 2.5 mo	6-mo PFS: 13.0%	_	mPFS: 5.5 mo
os	_	6-mo OS: 66.7%	_	NR
Safety	Manageable toxicities	≥Gr 3 TRAEs: 20.8%	Serious AEs: 39%	Gr 3/4 TRAEs: 12.5%
Follow-up	-	48.9 wk	11.7 mo	31 wk

^{1.} Lheureux S, et al. Presented at ASCO Annual Meeting, 2015. Abstract 3061. 2. Frenel JS, et al. Presented at ASCO Annual Meeting, 2016. Abstract 5515. 3. J Clin Oncol. 2019 Jun 10;37(17):1470-1478; 4. Hollebecque A, et al. Presented at ASCO Annual Meeting, 2017. Abstract 5504.

Study Design and Current Analysis

Randomized cervical cancer cohorts of CheckMate 358 (NCT02488759) testing 2 combination regimens of nivolumab + ipilimumab for R/M disease

ECOG, Eastern Cooperative Oncology Group; IPI, ipilimumab; NIVO, nivolumab; ORR, objective response rate; PFS, progression-free survival; PS, performance status; PST, prior systemic therapy; q2w, every 2 weeks; q3w, every 3 weeks; RECIST, response evaluation criteria in solid tumors; SCC, squamous cell carcinoma.

LBA62

Randomized cervical cancer cohorts of CheckMate 358 (NCT02488759) testing 2 combination regimens of nivolumab + ipilimumab for R/M disease

Primary endpoint: Tumor Response

	NIV	O3+IPI1	NIVO1+IPI3		
Response in all treated patients	No PST for R/M disease, n = 19	PST for R/M disease, n = 26	No PST for R/M disease, n = 24	PST for R/M disease, n = 22	
ORR, % (95% CI)	31.6 (12.6–56.6)	23.1 (9.0–43.6)	45.8 (25.6–67.2)	36.4 (17.2–59.3)	
Clinical benefit rate,* % (95% CI)	63.2 (38.4–83.7)	53.8 (33.4–73.4)	70.8 (48.9–87.4)	72.7 (49.8–89.3)	
Best overall response [†]					
Complete response	3 (15.8)	1 (3.8)	1 (4.2)	3 (13.6)	
Partial response	3 (15.8)	5 (19.2)	10 (41.7)	5 (22.7)	
Stable disease	6 (31.6)	8 (30.8)	6 (25.0)	8 (36.4)	
Progressive disease	7 (36.8)	11 (42.3)	6 (25.0)	5 (22.7)	
Duration of response, median, mo (95% CI)	NR (6.6–NR)	14.6 (7.5–NR)	NR (4.6–NR)	9.5 (1.9–NR)	
ORR by tumor cell PD-L1 expression,‡					
PD-L1 ≥1%, # responders/# treated (%) [95% CI]	4/13 (30.8) [9.1–61.4]	4/10 (40.0) [12.2–73.8]	4/11 (36.4) [10.9–69.2]	2/12 (16.7) [2.1–48.4]	
PD-L1 <1%, # responders/# treated (%) [95% CI]	1/3 (33.3) [0.8–90.6]	1/11 (9.1) [0.2–41.3]	0/4 (0) [0.0–60.2]	4/7 (57.1) [18.4–90.1]	

^{*} Proportion of patients with a complete response, a partial response, or stable disease; † Responses could not be determined in 1 patient with PST in NIVO3+IPI3 and in 1 patient each with and without PST in NIVO1+IPI3. † Tumor cell PD-L1 expression was defined as the percentage of tumor cells exhibiting plasma membrane staining at any intensity.

CI, confidence interval; NR, not reached; PST, prior systemic therapy.

Progression-free Survival

Owing to the high percentage of censored responses, median and rate estimators may be misleading. PST, prior systemic therapy.

Overall Survival

Owing to the high percentage of censored responses, median and rate estimators may be misleading. NR, not reached; PST, prior systemic therapy.

LBA62

Randomized cervical cancer cohorts of CheckMate 358 (NCT02488759) testing 2 combination regimens of nivolumab + ipilimumab for R/M disease

Primary endpoint: Tumor Response

Response in all treated patients	31/91	34%
No PST	17/43	39%
PST	14/48	29%

Regardless of tumor cell PD-L1 expression

Summary of TRAEs

	NIVO3+IPI1 (n = 45)		NIVO1+IPI3 (n = 46)		
Event, n (%)	Any grade	Grade 3–4	Any grade	Grade 3-4	
TRAEs	36 (80.0)	13 (28.9)	38 (82.6)	17 (37.0)	
Treatment-related SAEs	12 (26.7)	8 (17.8)	16 (34.8)	10 (21.7)	
TRAEs leading to treatment discontinuation	6 (13.3)	2 (4.4)	9 (19.6)	6 (13.0)	
Treatment-related SAEs leading to treatment discontinuation	2 (4.4)	1 (2.2)	5 (10.9)	5 (10.9)	

- No new safety signals
- Higher incidence of TRAEs and treatment-related SAEs leading to treatment discontinuation in NIVO1+IPI3 compared with NIVO3+IPI1
- No treatment-related deaths

LBA62

Take home message

The good:

- The combination of ipilimumab and nivolumab confirmed a strong activity in cervical cancer as seen in other tumor types
- High response rate and prolonged survival particularly in no PST population
- Activity seen regardless of tumor cell PD-L1 expression
- Chemotherapy-sparing regimen !!!

The bad:

Toxicity is not trivial: probably NIVO3+IPI1 preferred

The Ugly:

No control arm !!!!!

Take home message

Where are we going from here?

- Randomized trial in front line against standard chemotherapy + bevacizumab?
- Randomized trial in second line vs investigator choice?

Will Immunotherapy change the Outlook for Patients with Cervical Cancer?

Abs 9940: The context

Endometrial cancer The most common gynecological cancer in the developed world

- In 2018: 382.000 new cases of endometrial cancer diagnosed and 90,000 endometrial cancer-related deaths globally.
- Limited effective treatment options in women with advanced or recurrent disease

Can Immunotherapy improve the systemic treatment of advanced/recurrent endometrial cancer?

Clinical Evidence for Immune Checkpoint Inhibition in Endometrial Cancer

Study	Drug	N	Patient Selection	ORR(%)
Le et al. (2017)	Pembro	15	MMRd EC	53%
Ott et al. (2017)	Pembro	24	PDL1+	13%
Fleming et al. (2017)	Atezo	15	All	13%
Hasegawa et al. (2018)	Nivo	23	All	23%
Oaknin (2019)	Dostarlimab	125	All	29.6% d-MMR 48.8% p-MMR 20,3%
Antill (2019)	Durvalumab	70	All	d-MMR 43% p-MMR 3%
Konstantinopoulos (2019)	Avelumab	31	All	d-MMR 27% p-MMR 6%

Pembrolizumab was approved by the FDA for MSI-H or d-MMR endometrial cancer

- Only 25-30% of endometrial cancer have MSI-H or d-MMR
- What about the 70-75% with MSS or p-MMR?

LENVATINIB

- Levatinib is an oral multikinase inhibitor that targets VEGFR1-3, FGFR1-4, PDGFRa and the oncogenes RET and KIT
- In a phase 2 study of lenvatinib monotherapy in pts with advanced, previously treated endometrial cancer, 19 (14%) of 133 pts had a objective response and median PFS= 5.4 months

Abs 9940

Study Design

Phase 2, Open-label, Single-arm Study (NCT02501096)

Key Eligibility Criteria

- Aged ≥18 years
- Pathologically confirmed and metastatic endometrial carcinoma
- ≤2 Prior systemic therapies
- Measurable disease by irRECIST
- ECOG performance status ≤1
- Life expectancy ≥12 weeks

Primary End Point*

ORR at Week 24

Key Secondary End Points*

- Overall ORR
- DCR
- DOR
- CBR
- PFS
- Safety and
- OS

tolerability

Prespecified Exploratory End Points

- Independent imaging review per irRECIST and RECIST v1.1
- Antitumor activity by PD-L1 status

Post Hoc Exploratory Analysis

- Antitumor activity by tumor histology
- Antitumor activity by MSI status

*Tumor responses for primary and secondary end points were assessed by the investigator per irRECIST.

Pembrolizumab and Lenvatinib in Patients with Endometrial Cancer: phase 2 trial Too good to wait!!! Interim analysis published

Lancet Oncol. 2019 Mar 25. pii: S1470-2045(19)30020-8. doi: 10.1016/S1470-2045(19)30020-8. [Epub ahead of print]

Primary endpoint:

Tumor Response at 24 weeks (Investigator Assessment; irRECIST)

Tota = 108		Not MSI-H or dMMR (n = 94) ^a	MSI-H / dMMR (n = 11) ^a
Response Category		Week 24	
Objective response rate			
(complete response + partial response), n (%) ^b	41 (38.0)	34 (36.2)	7 (63.6)
95% CI	28.8-47.8	26.5-46.7	30.8-89.1

 $^{^3}$ 3 patients could not be assessed for MSI or MMR status; b ORR $_{wk24}$ and the exact 95% CIs were calculated with the Clopper-Pearson method, as was 95% CIs for ORR; c Duration of response was estimated with the Kaplan-Meier method, and 95% CIs were calculated with a generalized Brookmeyer and Crowley method d Probabilities of patients achieving a duration of response \geq 6 months or \geq 12 months were calculated using the Kaplan-Meier product-limit method and Greenwood formula.

Abs 9940

Tumor Response at Data Cut-off (Independent Imaging Review; RECIST version 1.1)

Endpoint	Not MSI-H or dMMR (n = 94)
Objective response rate (complete response + partial response)	
ORR (95% CI)	38.3 % (29,49)
Complete response	10.6 %
Partial response	27.7 %
Duration of response	
Median in months (range)	NR (1.2+,33.1+)
% with duration ≥ 6 months	69%

Data reported In the label

Percentage Change in Sum of Diameters of Target Lesions at Postbaseline Nadir by Histologic Subtype (Independent Imaging Review; RECIST version 1.1)

Abs 9940

n = the number of previously treated not-MSI-H or dMMR patients with both baseline and at least 1 postbaseline target lesion assessment.

TUESDAY, SEPTEMBER 17, 2019

FDA Approves KEYTRUDA® (pembrolizumab) plus LENVIMA® (lenvatinib) Combination Treatment for Patients with Certain Types of Endometrial Carcinoma

- . Disease Progression Following Prior Systemic Therapy
- . Not candidate for curative surgery or radiation
- Not Microsatellite Instability-High (MSI-H) or Mismatch Repair Deficient (dMMR)
- Under New FDA-Initiated Program, Project Orbis, Combination Treatment Is the First to Receive Simultaneous Review Decisions in the U.S., Australia and Health Canada

NOTHING COMES WITHOUT A PRICE

- Grade 3-4 AEs in 69,4% of pts (Hypertension 32.4%)
- Most frequent AEs of any grade: hypertension, diarrhea, decrease appetite, fatigue, hypothyroidism, nausea)
- Study drug discontinuation in 20% of pts, interruption in 72.2 %, reduction in 65%
- . Drug-related deaths?

Abs 9940

Take home message

The good:

- The combination of pembrolizumab and lenvatinib led to unprecedented results in patients with advanced /recurrent previously treated endometrial cancer, MSS.
- For the first time, a chemotherapy-free regimen demonstrated a high rate of deep and durable responses in this clinical setting with a high unmet need.

The bad:

Toxicity was as remarkable as activity.

The Ugly: No control arm!!!!!

Abs 9940

EXCITING RESULTS TODAY !!!

Different diseases but similar high unmet need

Different combinations, but both IO based

In both trials: High response rate, deep and durable responses in unselected

populations

In both trials: significant toxicity

Both regimens need confirmation in a prospective clinical trial Immunotherapy has changed the face of many cancers in the past decade, and finally, this is happening also for gynecological

cancers

