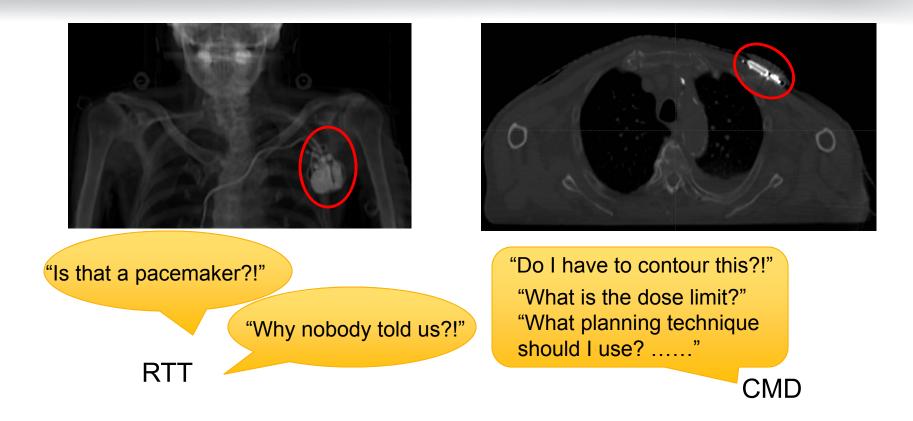

Radiation Therapy of Patients with Cardiac Implantable Devices: Dosimetric Evaluation and Clinical Management


Iris Z Wang, PhD DABR FAAPM September 6th, 2019

Are we living longer?

"Seemed more patients with pacemakers these days"

When we see this in the images...

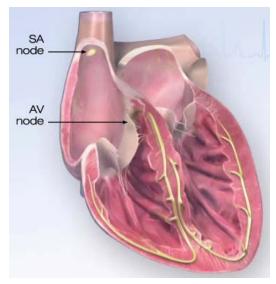
Outline

- Introduction
 - Arrhythmia
 - Cardiac Implantable
 Electronic Devices
 (CIED)
 - Photon interactions
- CIED Errors
- Out-of-field dose
 - ➤ TG 34: no direct beam
 - ≻ TG 158

Guidelines

- Cumulative dose
- Risk categories
- Clinical management
- Policy and procedure

Q&A


Introduction

- Arrhythmia
- CIED
- Photon interactions*

*This presentation will focus mainly on MV EBRT

Arrhythmia

- Abnormal heart rhythms
- Natural pacemaker SA node
- Causes
 - Abnormal rhythm from SA node
 - Interrupted conduction pathway
 - Impulses from other heart tissue

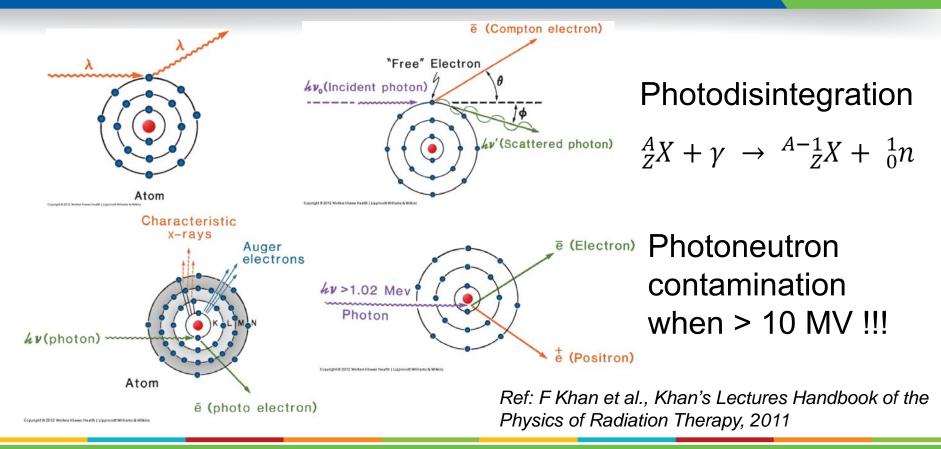
Ref: <u>https://www.heart.org/en/health-topics/arrhythmia/about-arrhythmia</u> Last accessed 9/4/19

CIED

Cardiac Implantable Electronic Devices

- Implantable Cardiac Pacemaker (ICP)
- Implantable Cardioverter Defibrillator (ICD)
 Newer ICDs both pacemaker and defibrillator

CIED - components



Pulse Generator

- Capacitors
- Semiconductor Chips
- Battery

Ref: C M Costelloe et al., AJR 2012; 199:1252-1258

Photon interactions

Potential CIED errors

- By ionizing radiation
- By Electromagnetic Interference (EMI)

Potential CIED errors by ionizing radiation

- Altered stimulation (amplitude, frequency)
- Altered sensing (over-/under sensing)
- Inhibition of stimulation (pause, asystole)
- Change in operational mode (incl. asynchronous stimulation)

Ref: B Gauter-Fleckenstein et al., Strahlenther Onkol 2015; 191:393-404

Potential CIED errors by ionizing radiation

- Battery depletion (ERI-exchange indicator)
- Altered electrode sensing (impedance)
- Loss of telemetry or programming capabilities
- Reset in default setting (fallback mode)
- Loss of function

Ref: B Gauter-Fleckenstein et al., Strahlenther Onkol 2015; 191:393-404

Other potential errors for ICD only

- Inhibition of antitachyarrhythmia therapy
- Altered (reduced) shock energy
- Prolonged detection and charging intervals
- Inadequate (shock) therapy

Ref: B Gauter-Fleckenstein et al., Strahlenther Onkol 2015; 191:393-404

Potential CIED errors by EMI

- Altered sensing (over-/under sensing)
- Inhibition of stimulation (pause, asystole)
- Reed-switch interaction (asynchronous stimulation)
- Atrial-triggered fast ventricular pacing
- ICD: Inhibition of antitachyarrhythmia therapy
- ICD: Inadequate (shock) therapy
- Reset/reprogramming of device

Ref: B Gauter-Fleckenstein et al., Strahlenther Onkol 2015; 191:393-404

- AAPM TG34 recommended
 "Pacemaker not in direct beam"
- AAPM TG158

Ref: JR Marbach et al., AAPM Report No. 45, Med Phys 1994 Ref: SF Kry et al., AAPM TG158, Med Phys 2017; 44:e391-429

AAPM TG-34 recommendations

- Should not be treated with a betatron
- Should not be in direct radiation beam
- Dose should be estimated before RT
- If > 2 Gy, should be checked prior to RT, and possibly at the start of each week
- Functional changes in pacemaker have been observed in the 2-10 Gy range

Ref: JR Marbach et al., AAPM Report No. 45, Med Phys 1994

- Internal (patient) scatter Dominant in close proximity to the treated volume
- Collimator scatter
- Head leakage

Dominant at distance > ~20 cm

Leakage and Scatter from machine Scatter from within patient

Ref: SF Kry et al., AAPM TG158, Med Phys 2017; 44:e391-429 Figure adapted from: (Last accessed on 9/4/19) https://www.aapm.org/meetings/amos2/pdf/49-14482-90758-54.pdf

- Softer than primary beam energy
- Decrease with distance
- Increase with field size (when close to field edge)
- Increase with modulation due to more head leakage and collimator scatter (when farther from field)

Ref: SF Kry et al., AAPM TG158, Med Phys 2017; 44:e391-429

- Beam energy > ~10 MV \rightarrow Neutrons
 - Primary collimator, target, flattening filter, jaws, MLC...
 - Isotropic neutron emissions from accelerator head
 - Fluence of neutrons increases linearly with MU
 - For Varian accelerator ~10 times from 10 MV to 15 MV
 ~2 times form 15 MV to 18 MV

Ref: SF Kry et al., AAPM TG158, Med Phys 2017; 44:e391-429

- Decrease with Flattening filter-free (FFF)
- Increase with physical wedges
- Lager errors in dose calculation by treatment planning systems (TPS)
 when > 3 cm from field edge or < 5% isodose line
- Measurement and Monte Carlo Simulation

Ref: SF Kry et al., AAPM TG158, Med Phys 2017; 44:e391-429

Published guidelines

- Cumulative dose
- Risk categories
- Clinical management

Cumulative dose guidelines

• AAPM TG-34 (1994): 2 Gy limit

Does not include current technology and ICD

- Different among manufacturers and some do not provide a safe dose limit
- *HRS consensus statement: < 5 Gy
- **DSRO: Risk categories
- ***Upcoming AAPM TG-203: Risk categories

*Ref: JH Indik et al., Heart Rhythm 2017; 14:e97-e153 **Ref: CW Hurkmans et al. Radiat Oncol 2012; 7:198 ***Ref: D Mihailidis, <u>https://amos3.aapm.org/abstracts/pdf/87-22797-326454-102401.pdf</u>, Last accessed on 9/4/19

Recommendations from Manufacturers

Recommendation	Biotronik	Boston Scientific	Medtronic	St. Jude Medical
Device checks	Before and after RT	Specific to patient Monitor after RT	After RT, If exceeds safe dose during RT	During and after RT
Max ICP dose	2 Gy	No safe dose	5 Gy	No safe dose
Max ICD dose	2 Gy	No safe dose	1-5 Gy dep. on model	No safe dose
Max energy	<10 MV	Not stated	≤10 MV	Not stated
Inactivation of antitachycardia	Yes	Yes	Yes	Yes
Pb shielding	Yes	All available shielding options	No (ineffective against neutrons)	Not stated
Heart rhytum monitoring	Yes, during RT	Determine by physician team	Not stated Ref: T Zaremba et al., PA	Yes CE 2015; 38:343-356

Risk categories – Dutch Society of Radiotherapy and Oncology

Table 2 Patient risk categories: cumulative dose to the CIED and pacing independent versus pacing dependent

	< 2 Gy	2-10 Gy	> 10 Gy
pacing-independent	Low risk	Medium risk	High risk
pacing dependent	Medium risk	Medium risk	High risk

Risk defined from the patients' perspective; how high is the risk for the patient? The patient's risk is not equal to the risk of a CIED defect.

Upcoming TG-203***: will adopt similar risk category approach but will likely define 2-5 Gy as medium risk and > 5 Gy as high risk

ROSWELL PARK COMPREHENSIVE CANCER CENTER Ref: CW Hurkmans et al. Radiat Oncol 2012; 7:198

Pacemaker dependency

The risk of serious injury or death from pacemaker failure

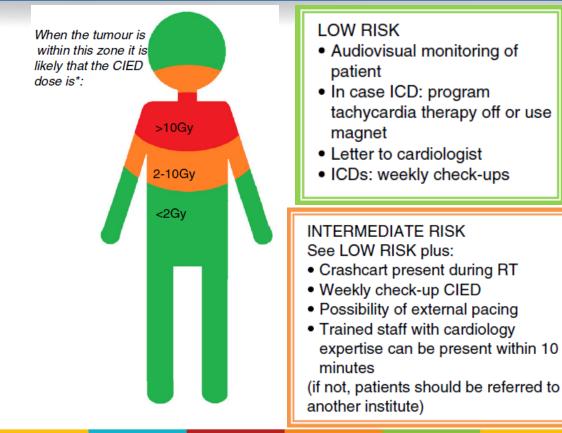
	Class I	Class II	Class III
Symptoms	Bradycardia	Asymptomatic	Asymptomatic
Ventricular rate	No intrinsic activity	Ventricular rate <30 beats	Ventricular rate > 30
		per minute	beats per minute
Abrupt cessation of pacing	Fatal	Not fatal	Not fatal
Emergent/urgent situation	Expected	Not expected	Not expected
Level of cardiac monitoring	Intense and active, before,	Routine	Routine
	during and after radiotherapy:		
	cardiac arrest team on call		
Previous untoward	Usually present	Not present	Not present
cardiac history			
Pacemaker dependency	Highly dependent	Intermediately dependent	Non dependent

Ref: T Wadasadawala et al., Clin Oncol 2011; 23:79-85

Guidelines by Dutch Society of Radiotherapy and Oncology

Patient with CIED and indicated radiotherapy

- Inform treating cardiologist and inform patient
- Determine patients' pacing-dependency
- If ICD, Inform if anti-tachycardia therapy can be switched of by magnet
- If CIED check-up > 3 months ago, plan check-up prior to start of radiotherapy


Photon beam energy <10MV

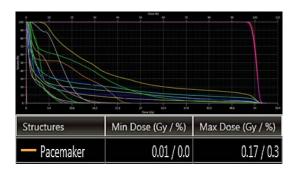
• Estimate dose on CIED (seed rawing for indication)

• Minimize dose on CIED with treatment plan optimisation

ROSWELL PARK COMPREHENSIVE CANCER CENTER Ref: CW Hurkmans et al. Radiat Oncol 2012; 7:198

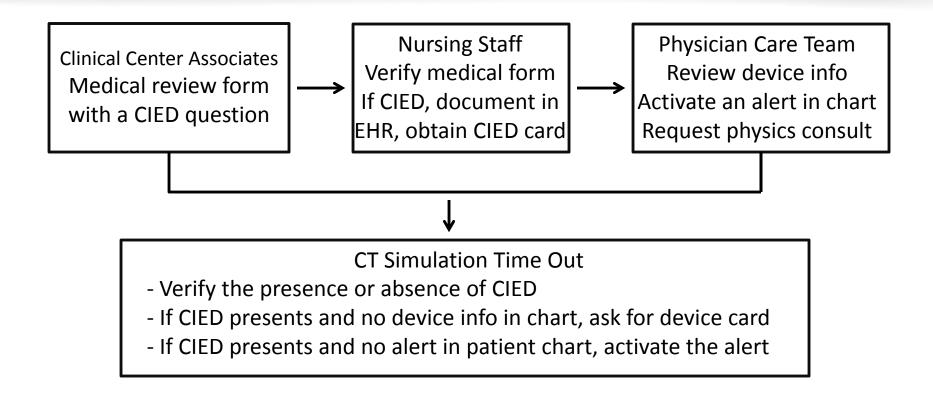
DSRO guidelines

HIGH RISK


- In exceptional cases a decision to start RT can be made
- safety measures which are atleast those used for intermediate risk patients
- ECG-monitoring during every fraction
- CIED checked within 24 hours by pacemaker technician

ROSWELL PARK COMPREHENSIVE CANCER CENTER Ref: CW Hurkmans et al. Radiat Oncol 2012; 7:198

Policy and Procedure



CIED management P&P

- Identify patients who have CIED
- Alert and documentation in patient chart
- Multidisciplinary team clinical management
- Published guidelines and manufacture safe dose limit if provided

Identify patients with CIED

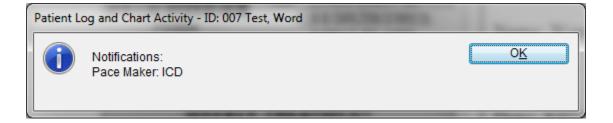
CIED document and Alert

Medical Device ID Scientific

Patient: Patient Name Physician: Following Physician/Clinic Name Physician Telephone: Following Phone

MFG	Product	Model/Serial	Implant Dt
Boston Sci	CRT-D	1234 968765	12-OCT-2015
Boston Sci	Lead	7654 123456	12-OCT-2015
Boston Sci	Lead	6789 234567	12-OCT-2015
Boston Sci	Lead	4321 345678	12-OCT-2015

Implanted Cardiac Rhythm Management Patient Contact physician for medical questions or emergency www.bostonscientific.com

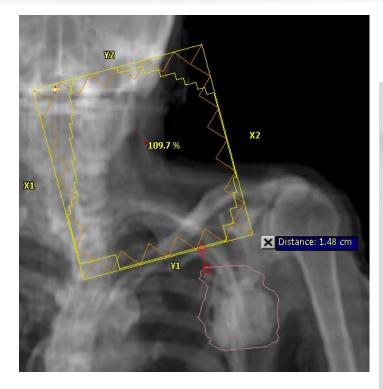

For Patients 866.484.3268 (UBA) 001.651.582.4000 (Outsid

001.651.582.4000 (Outside USA) www.lifebeatonline.com For Security Personnel Magnetic security wands may adversely affect device's function. Do not place wand over device.

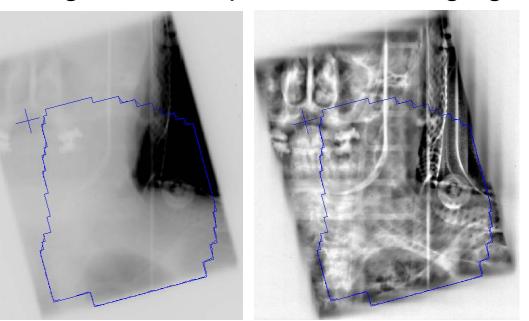
For Medical Personnel 1.800.227.3422 or 651.582.4000

MRI – For questions regarding MRI device compatibility, see the Boston Scientific website at www.bostonscientific.com/imageready

CRM-54301-AB___OCT2015


Dosimetry procedure

- No primary radiation beam
- Photon beam energy $\leq 10 \text{ MV}$
- Contour CIED in CT images and report TPS computed maximum dose
- If no manufacture dose limit, <2 Gy (TG34)
- If >2 Gy, notify physicist and physician for further evaluation

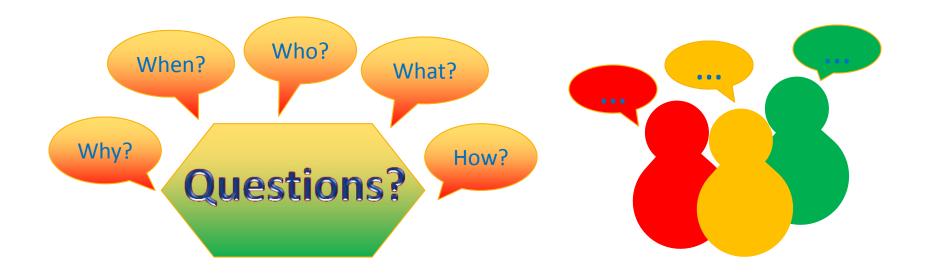

Physicist procedure

- Review patient chart for CIED information
- Verify alert in patient chart
- Verify treatment plan and CIED doses according to guidelines and P&P
- Notify and discuss with relevant parties if problem detected

Avoid direct beam at verification imaging

In this example, Y1 jaw was closed during double exposure MV imaging

Physician and care team


- Schedule interrogation of the CIED by a manufacturer-representative. Frequency is at discretion of attending physician.
- Document interrogation report in EMR
- At least should interrogate CIED at completion
- If cumulative dose guidelines can not be met, make decision to choose other options, e.g.
 CIED relocation, magnet, etc.

Summary

- Risk categories cumulative dose limit, type of CIED and patient's CIED dependency
- Limitations in TPS out-of-field dose computation
- No direct radiation
- No high-energy photon
- Multidisciplinary clinical management develop a Standard Policy and Procedure!!!

CIED in radiation therapy

Thank you!

