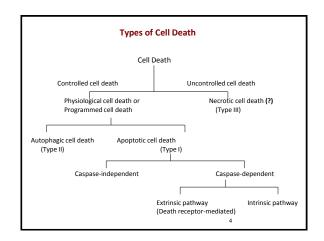
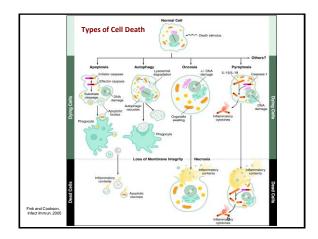
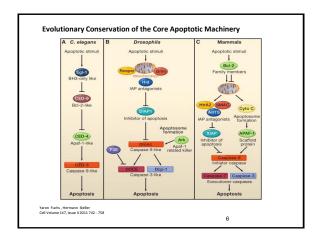
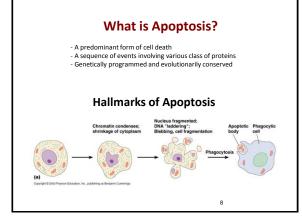

#19 Apoptosis Chapter 9

Neelu Yadav PhD <u>Neelu.Yadav@Roswellpark.org</u>


1





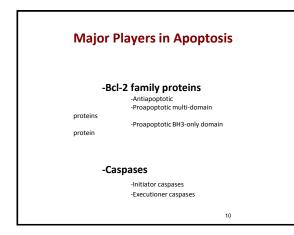


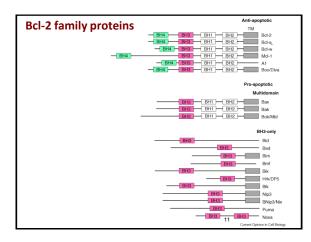
What is the difference between key cell death mechanisms					
Apoptosis		Autophagy			
Necros	iis				
-Genetically programmed	Genetically programmed	Not (?) genetically			
-Extra and intracellular Acute injury (?) (Extra)	Extra and intracellular				
-Cell shrinkage	Autophagic vacuoles				
Cytoplasm swelling -Blebbing	Blebbin	a			
Disruption of Me		ъ			
-Organelle intact Disruption	Sequesteration				
-Chromatin condensation condensed	Partial condensation	Non-			
-DNA fragmentation (laddering) No laddering	No laddering				
-Phagocytosis with	Phagocytosis with				
Release of intracellular no inflammation	no inflammation	7			

Why should we study apoptosis?

- Intact death program is required for successful embryonic development and maintenance of normal tissue homeostasis

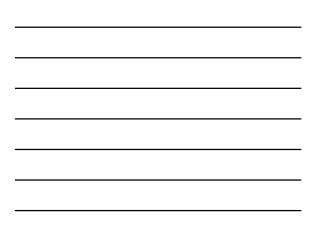
-Insufficient or evasion of apoptosis manifest as:

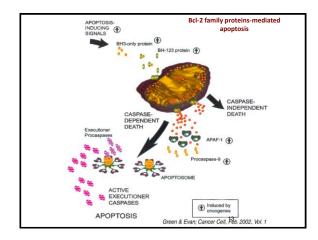

- Cancer

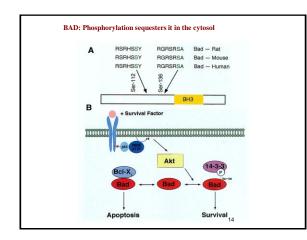

9

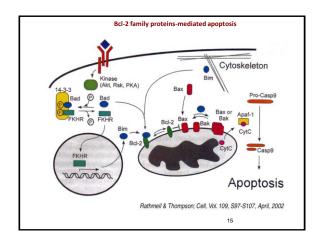
- Autoimmunity (proliferation of immune system cells that recognize and attack self antigens)
 Viral infections (removal of virally infected cells by
- apoptosis)

-While accelerated cell death is related to: - Neurodegenerative diseases


- Immunodeficiency, infertility
- Hematologic diseases



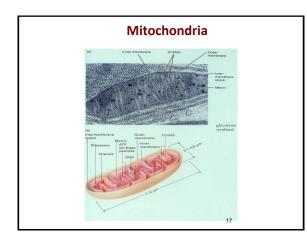




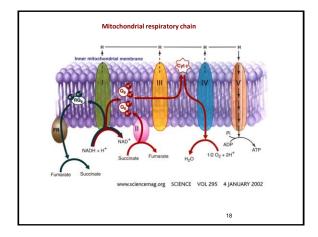
Regulation of Bcl-2 and Bcl-xL: Post-translational modifications

*Bcl-2 must change conformation (or be 'activated') on the mitochondria to inhibit Bax (Dglugosz PJ, EMBO J. 25, 2287, 2006).

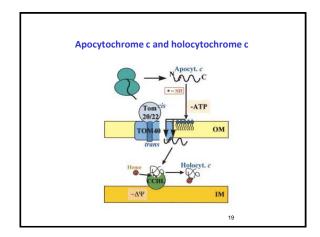
*Bcl-2 and Bcl-xL (and other prosurvival members) are the guardians of the mitochondria: they are inactivated when BH3-only proteins juxtapose their BH3 domain to Bcl-2 (protein-protein interaction).

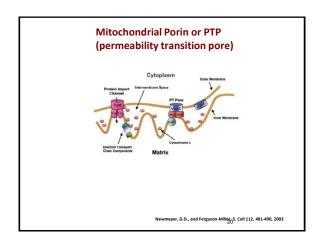

*These proteins are transcribed into multiple splice variants.

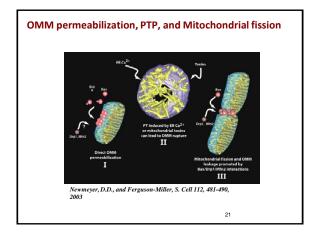
*Bcl-2 is phosphorylated by many apoptotic stimuli. Phosphorylation of Bcl-2 within the flexible loop generally inhibits its anti-apoptotic activity. But it has also been reported that phosphorylation is required for its apoptosis-inhibitory effect.

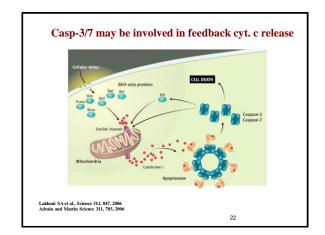

*Bcl-2 and Bcl-xL can also be cleaved by caspases during apoptosis. Cleaved proteins turns themselves into apoptotic killers.

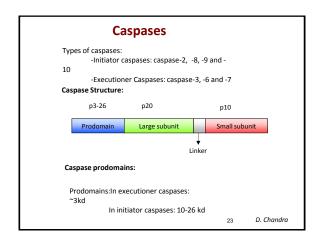
*Bcl-xL may undergo deamidation: deamidation of Asn imparts susceptibility to apoptosis by disrupting the ability of Bcl-xL to block the proapoptotic activity of BH3-only proteins.

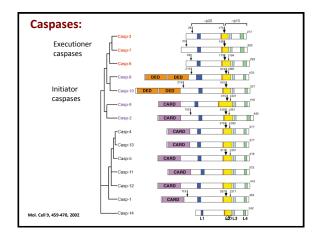

16 D. Tang

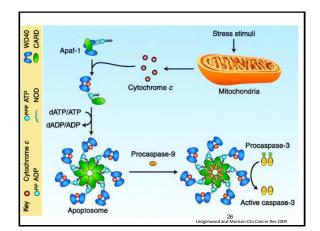




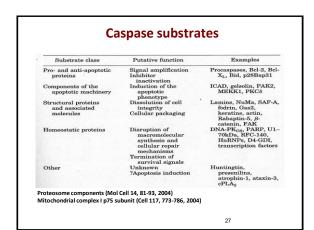


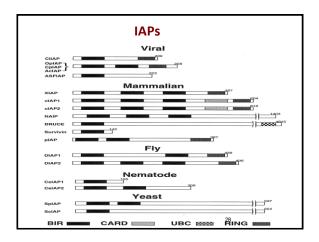


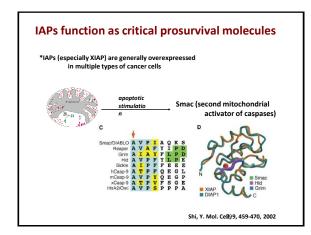


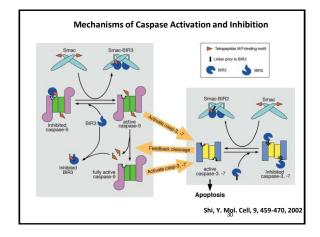


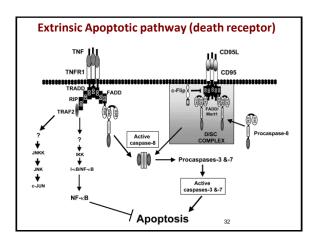
Caspases						
Zymogen	Prodomain, length and motif	Active subunits	Activation adapter	Tetrapeptide preference [®]		
kDa		kDa	a the state of the state of the			
Apoptotic initiators Caspase-2 (51) Caspase-8 (55)	Long, CARD Long, DED	20/12 18/11	RAIDD	DXXD ^{6,c} (L/V/D)EXD ²		
Caspase-9 (45) Caspase-10 (55)	Long, CARD Long, DED	17/10 17/12	APAF-1 FADD	(IV/L)EHD Unknown		
Apoptotic executioners Caspase-3 (32) Caspase-6 (34)	Short	17/12 18/11	NA" NA	DEXD (V/T/DEXD		
Caspase-7 (35) Cytokine processors	Short	20/12	NA	DEXD		
Caspase-1 (45) Caspase-4 (43) Caspase-5 (48)	Long, CARD Long, CARD Long	20/10 20/10 20/10	?CARDIAK Unknown Unknown	(W/Y/F)EHD (W/L/F)EHD (W/L/F)EHD		
mCaspase-11 ^f (42) mCaspase-12 (50) Caspase-13 (43)	Long Long Long	20/10 20/10 20/10	Unknown Unknown Unknown	Unknown Unknown Unknown		
mCaspase-14 (30) Invertebrate caspases	Short	20/10	NA	Unknown		
CED-3 (56) DCP-1 ^g (36)	Long, CARD Short	17/14 22/13	CED-4 NA	DEXD Unknown		

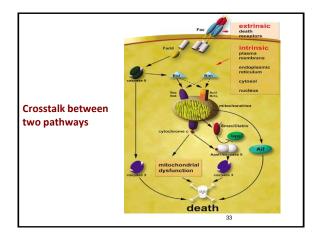






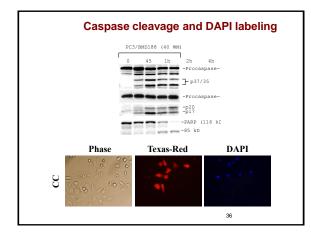




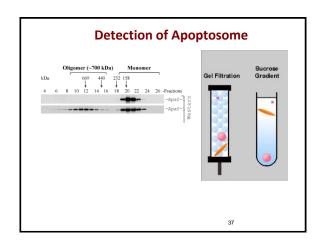

Known apoptotic pathways to activate caspases

31

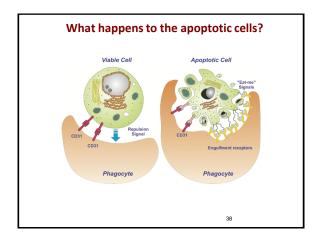
- Intrinsic pathway
- Extrinsic pathway or death-receptor pathway
 Other alternative pathways
 Caspase-independent apoptosis

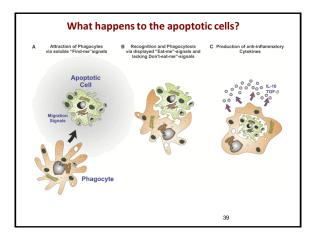

How to detect apoptosis ?

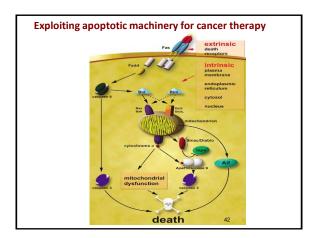
34


-Cell morphology by using microscopy -Cytochrome c release by immunolabelling and Western -Western Blot for caspases and their substrate -DAPI and Annexin-V-staining -Detection of apoptosome using gel filtration

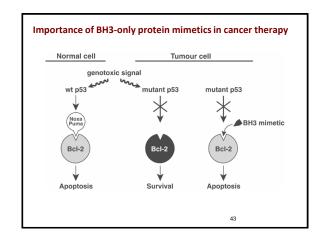
MitoTracker Cytochro Immunolabeling, subcellular fractionation and Western blot 0 0 m А GM701/BMD188 (40 mM) 15 п 30 2h 4 0 1h -Actin -Holocytochrom Mito -Holocytochrom Cells homogenized Differential centrifugation Cytosol Mitochondria Ļ Ļ SDS-PAGE and Western 35






Apoptosis and Tumorigenesis

- 1) Upregulation of Bcl2, BclxL, IAPs, Flip etc.
- 2) Downregulation/ mutation of Bax, Bak, BH3-only protein, Death-receptors, Apaf-1 etc.


40

41

Apoptosis based strategies for cancer therapy

Take Home message from apoptosis:

-A predominant form of cell death from worm to mammals

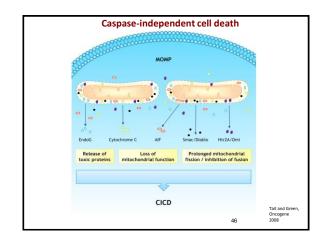
-Bcl-2 family proteins make decision to die or live

-Caspases are the main soldiers in the battle field to execute apoptosis

-Mitochondrion is the center point for all activities

-Targeting Bcl-2 family proteins have enormous potential in cancer therapy

-Finding N-terminal smac/DIABLO mimetics will counter IAPs


-Applications of death ligands such as TNF- α , TRAIL etc.

44

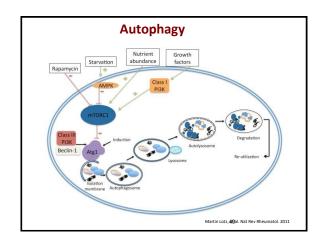
Other apoptosis/survival functions of Bcl2-family proteins and caspases

- Bcl-2 and Bcl-xL can also be cleaved by caspases during apoptosis and this cleaved fragments function as proapoptotic proteins.
- These proteins also undergo posttranslational modifications, which can also impact on apoptosis sensitivity.
- Pro-apoptotic BH3-only proteins such as Bad, Bid, Puma, Noxa have also been shown to possess prosurvival roles
- Caspase-3 activation is involved in cancer cell invasion
- Caspase-8 is required by NF-kB activation and promotes cell motility

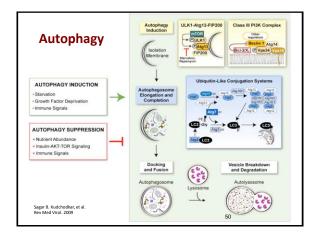
45

Autophagy


• First recognized under EM early 1960s.


• Also called macroautophagy: Self-eating to survive.

• A unique form of membrane trafficking in which membrane compartments (autophagosomes) engulf both organelles and cytosolic macromolecules and deliver them to the lysosome for degradation.


47

<section-header><image><figure><section-header><text><text>

