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Immortalization, Senescence, Telomerase, and Cancer

1. Cell Senescence: Characteristics
2. Telomerase, Senescence, and Cancer




What is Senescence??

A state of cellular being characterized by:

a) metabolic activity but

b) irreversible loss of the capacity to enter active cell cycle
c) Growth factors help sustain viability but

d) Are unable to elicit usual proliferative response

Leonard Hayflick and Paul Moorhead (1961) first showed the phenomenon
that cells would stop growing after a certain number of divisions.
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Normal cells have predetermined population doublings
Proliferative capacity decreases with age
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Characteristics of senescent cells

* Permanent growth arrest— can not be reversed by physiological stimuli

* Increased cell size— flat cells with huge cytoplasm (appearance of a fried egg)
* Increased cytoplasmic granularity

* Express senescence associated (SA) beta galactosidase

* Metabolically active
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Influence of culture conditions
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Senescent cells exhibit inability to enter active cell cycle
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Overexpression of p16 (middle) can induce
senescence phenotype as seen in cells that
have entered senescence after extensive
propagation in vitro.
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Two major tumor suppressol

rs p53 and pRb regulate senescence
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Inactivation of both p53 and pRb is needed to escape from senescence
Both p53 and pRb are inactivated in majority of human cancers




DNA damage response can activate cell senescence
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Comparison between terminally
differentiated and senescent cells in culture
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Senescence associated heterochromatic foci (SAHFs)
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Senescence & Senescent Cells
1)  Bigandflat, p nuclear vacuolization, less motile, decreased saturation

density, and positive for SA-Bgal.

2)  Multiple fons in gene expression, e.g., o of and
underexpression of TIMPs (tissue inhibitor of metalloproteinase).

3)  Attenuated proliferative response to mitogens (EGF, PDGF, IGF-1) and unable to induce c-fos
(but myc and ras induction o).

4)  “Irreversible” cell-cycle arrest at G,/S with 2N nuclear content (but increased nuclear size); <1
PD in 2 weeks.

5)  Decrease in positive regulators (cyclin D/Cdk4, cyclin E/Cdk2, etc) and increase in negative
regulators (p16, p21, p19*%, hypo-phosphorylated RB, etc).

6) Resistance to apoptosis induction.

7)  Senescent cells, to a degree, resemble terminally differentiated cells.

8)  Presenescent cells often show telomere dysfunction as revealed by markers ATM activation
and formation of nuclear foci containing H2AX-y, 53BP1, MDC1,NBS1, which disappear in fully
senescent cells.*

9)  Fully senescent cells often possess karyotypic instability: i ication,
aneuploidy, and other abnormal karyotypes.

10) Cellular senescence, like aging, is dominant. Therefore, immortality results from recessive
changes in negative regulators (tumor suppressive genes).

11)  Senescent cells accumulate senescence-associated heterochromatin foci (SAHFs), in which
HMG-A proteins accumulate.

12) Senescent cells release pro-inflamatory cytokines (interleukins, IGFBPs, and TGF-beta) that act

in an autocrine manner to promote senescence and in a paracrine fashion to recruit pro-
inflamatory cells to promote tumorigenesis.

“Bakkenist CJ, Drissi R, Wu J, Kastan MB, Dome JS. Disappearance of the telomere dysfunction-induced
stress response in fully senescent cells. Cancer Res. 2004 Jun 1;64(11):3748-52. slide modified from Dr. Dean G Tang

So how do we explain these effects
seen in senescent cells?




Telomere
** 1978: Telomere was first found as an unusual repeated sequence motif (GGGGTT) at
chromosome termini in the ciliate setrahymena (Blackburn & Gall, J. Mol. Biol. 120, 33-53,
1978).

**Tremendous variability: <50 bp in the hypotrichous ciliates but as long as 5100 kb in mice.
**1985-1989: Telomerase activity and telomerase uncovered (Greider CW and Blackburn EH,

Cell 43, 405-413, 1985; Cell 51, 887-898, 1987; Nature 337, 331-337, 1989).

**In humans, telomeres are made up of an average of 5,000 -15,000 bp of G-rich
(TTAGGG)n repeats and telomere-binding proteins.

**Each cell division loses 50-100 bp of telomeres

**When a telomere loses a critical number of base pairs, it triggers a DNA damage signal
to stop cell division and initiate senescence.

Telomere functions: ==

--- form specific complexes with telomere binding proteins

--- protect chromosome ends from exonuclease digestion

--- prevent aberrant recombination

--- prevent the chromosome ends from activating cell-cycle and DNA damage checkpoints

Slide Credit: Dr. Dean G Tang
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Telomere and the chromosome
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Telomere Synthesis

End replication problem:
Watson JD. Nature New Biol. 239, 197-201,

1972. Slide Credit: Dr. Dean G Tang.




Telomere and Telomerase
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Figure 10-23 The Biology of Cancer (0 Garland S<innce 2007)

Telomere and Telomerase Assays

**Direct measurement of telomere length o pruar

A. TRA (terminal repeat assay) POs 420 4 16222426

1. Digest DNA with Alu | or Hinf . = T
2. Perform Southern with radiolabeled (TTAGGG)n
1
B. Q-FISH or flow cytometry using fluorescently-labeled probes :
.
1. Metaphase spreads are hybridized with Cy3-labeled PNA ./

(CCCTAA), telomeric oligonucleotide. .
2. Telomere fluorescence intensity analyzed by TFL-Telo.
3.1TFU =1 kb telomere (PNAS 94, 7423-7428, 1997). 5
4. Flow cytometry is performed using similar procedures.

**TRAP (telomeric repeat amplification protocol

(Kim et al., Science 266, 2011-2015, 1994; Kim and Wu, NAR, 25, 2595-2597, 1997)
1. Prepare cell lysates (in CHAPS buffer).
2. Add an end-labeled telomere-specific oligonucelotide
substrate
(TS primer) to the lysates.
3. If telomerase is present, it adds TTAGGG repeats to the
substrates.

Slide Credit: Dr. Dean G Tang




Loss of TRF2 leads to extensive end to end fusion

(A) WT

Figare 10-11 The Bislogy of Cancr (0 Garland Science 2007)

(B) TRF2 deprived

TRF2 is a key protein in maintaining normal telomere structure

11/2/2016

--- Telomeres of cultured somatic cells continuously erode until M1

--- Telomeres derived from elderly individuals tend to be shorter than those derived
from young donors

---Telomeres derived from constant self-renewing tissues such as liver and Gl systems
tend to be shorter than most other tissues and organs.

--- Telomere length is a predicator of proliferative potential

---If M1 is overcome by transformation with viral oncogenes, telomeres continue to
decrease in size until M2, a process that may be dictated by telomere length itself.

--- Whereas telomere size continuously decreases during replicative senescence,
immortalized cells reach an equilibrium, albeit at shorter-than-wild-type length

© granulocytes
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Telomere, Telomerase and the Hayflick
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Karyotypic chaos seen in human bladder cancer cell line
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ImTR mice lacked detectable telomerase activity yet were viable for the 6 generations

analyzed. Telomerase-deficient cells could be immortalized in culture, transformed by viral

oncogenes, and generated tumors in nude mice following transformation. Cells from the 4th

mTRY generation onward possessed chromosome ends lacking detectable telomere repeats,
and including end. d fusions.

2| ate-generation mTR- mice show defects (decreased proliferation and increased apoptosis) in
high-renewable organ systems such as spermatogenesis and hematopoietic cells in bone
marrow and spleen.

3mTRY- ES cells slow down their proliferation after ~300 divisions and completely stop
proliferation after 450 divisions.

Aate-generation mTR’- mice demonstrate shortened telomere and genetic instability,
shortened life span and reduced capacity to respond to stresses such as wound healing and
hematopoietic ablation. There was increased incidence of spontaneous malignancies.

1. Blasco et al,, Cell 91, 25-34, 1997.
2. Lee et al,, Noture 392, 569-574, 1995,
3. Niida et al,, Nature Genetics, 19, 203-206, 1998.
4. Rudolph et al., Cell 96, 701712, 1999.

Slide Credit: Dr. Dean G Tang

ImTR significantly reduces tumor formation in p16™*4/p19"% null mice.

Reintroduction mTR into cells restored the oncogenic potential, suggesting that telomerase
activation is a cooperating event in the malignant transformation of cells containing critically short
telomeres. Loss of telomere function impairs, but does not prevent tumor formation.

2| ate-generation mTR" cells show severe telomere shortening, genomic instability, and p53
activation, leading to cell-cycle arrest and/or apoptosis. The mTR”-p537- mice showed significantly
increased rate of epithelial cancer formation.

3mTR- mice show rapid liver cirrhosis when subjected to genetic, chemical, and
surgical ablation. Telomerase gene delivery alleviated cirrhotic pathology
and restored liver function.

“Telomere dysfunction in late-generation mTR’- mice impairs DNA repair and
enhances sensitivity to ionizing radiation.

STelomere dysfunction, together with p53 deficiency, promotes non-reciprocal
translocations and epithelial cancers in mice.

1. Greenberg et al, Cell 97, 515-525, 1999.
2. Chin etal., Cell 97, 527-538, 1999.

3. Rudoph et al, Science 287, 1253-1258, 2000.
4. Wong et al,, Nature Genetics 26, 85-88, 2000.
5. Artandi et al., Nature 406, 641-644, 2000.

Slide Credit: Dr. Dean G Tang
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Human vs Mouse Tumors

1. The majority of mouse tumors are sarcomas and leukemias whereas
80% of the human tumors are carcinomas - cancer of epithelia
where rapid cell turnover occurs.

2. Most of the experimental therapeutics that work in mouse fail in human,
why???

3. The answer may partly lie in the behavior of telomeres, and the relation-
ship between telomere shortening, replicative cell senescence,
and genetic instability.

4. In human, telomerase is suppressed or shut down and telomere shortening
leads to replicative cell senescence. In mice, cells have long

telomeres
and retain telomerase activity, thus no telomere-dependent

replicative
senescence. However, in the 5-6th generation of TERC”" cells, the

mice
begin to show various abnormalities, including increased incidence
of cancer, raising the possibility that natural telomere shortening
helps Slide Credit: Dr. Dean G Tang
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**A significant number of immortal or tumor cell lines have no detectable
telomerase activity and also no defect in proliferation and growth.
**These cells have unusually long telomeres (up to 50 kb; ~30 kb longer
than that observed in the longest telomerase-positive cell lines).
**The ALT (alternative lengthening of telomeres) pathway of telomere
maintenance (EMBO J., 14, 4240-4248, 1995; Nature Genetics, 26, 447-450,
2000). ALT occurs by means of homologous recombination and copying
switching (i.e., DNA sequences are copied from telomere to telomere).

Slide Credit: Dr. Dean G Tang

1. Telomerase is anti-apoptotic (Cao et al., Oncogene 21, 3130-3138, 2002).

2. Telomerase contributes to tumorigenesis by a telomere length-independent
mechanism (Stewart et al., PNAS 99, 12606, 2002; Chang and DePinho, PNAS
99, 12520-12522, 2002).

3. Telomerase enhances DNA repair and genomic stability (Oncogene 22, 131-
146, 2003).

4. TERT promotes cellular and organismal survival independently of telomerase
activity. Lee J, Sung YH, Cheong C, Choi YS, Jeon HK, Sun W, Hahn WC,
Ishikawa F, Lee HW. Oncogene. 2008 Jun 12;27(26):3754-60.

Slide Credit: Dr. Dean G Tang
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Dysregulation of Telomerase during Tumorigenesis

1) Telomerase activity and hTERT (telomerase reverse transcriptase) expression
are low or absent in most somatic cells and primary tissues, due to

a) transcriptional repression by WT1 and Mad,

b) transcriptional repression by histone deacetylation.

2) In immortalized or cancer cells, hTERT activity is ‘reactivated’ due to
a) transcriptional upregulation by myc, E2F1 etc,
b) gene amplification,
c) various signaling pathways such as c-Abl, bFGF, 14-3-3, Hsp90, Akt, PKC,

etc,

d) epigenetic chromatin remodeling.
3) Telomerase activity is normally associated with proliferation: cycling cells
have high while differentiating cells have low telomerase activity. Due to this

correlation, normal cells have relatively longer telomeres than tumor cells
because the latter have undergone more cell divisions.

Slide Credit: Dr. Dean G Tang
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Evidence of senescence as a tumor suppression mechanism
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DNA damage is able to induce senescence in p53-wt tumor cells in vitro and in
vivo. p53 and p21 appear to play a critical role in the onset of senescence while
p16 is involved in maintenance of senescence (te Poele et al., Cancer Res. 62,
1876-1883, 2002).

Senescence induction appears to contribute significantly to the efficacy of anti-
neoplastic drugs (Schmitt et al., Cell 109, 335-346, 2002; Cancer Cell 1, 289-296,
2002; JCI, 113, 169-174, 2004).

Slide Credit: Dr. Dean G Tang
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