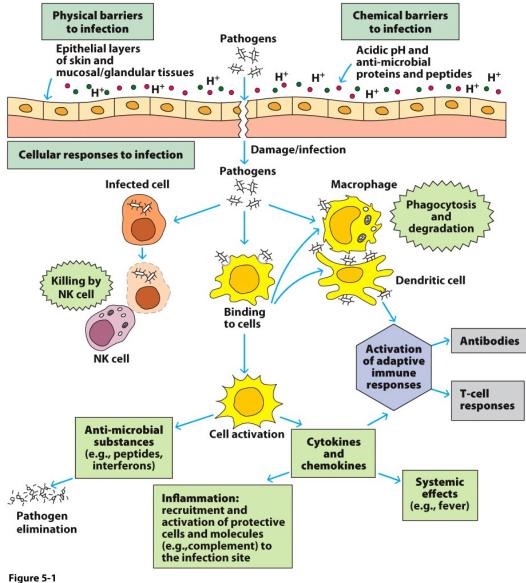
Innate Immunity (Part 1)

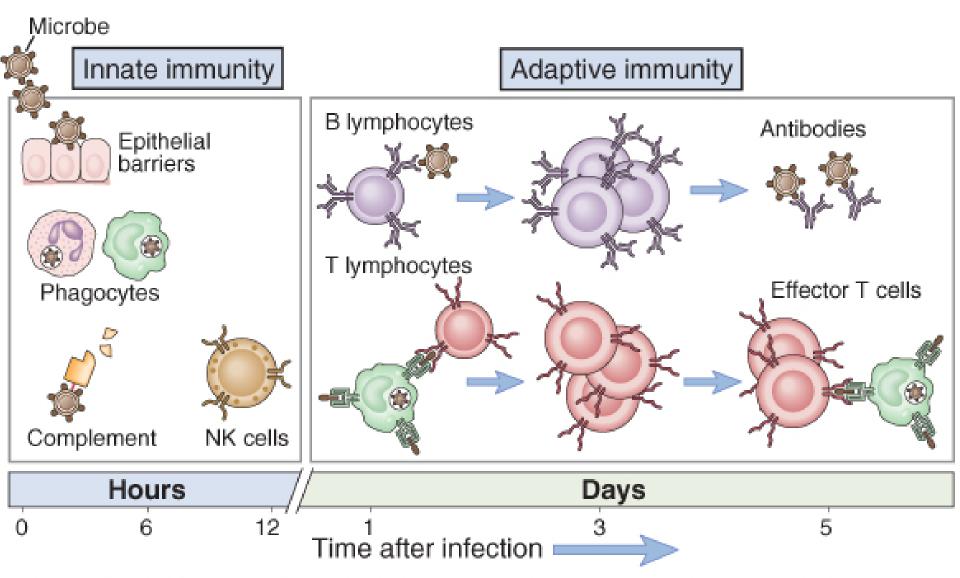
Yasmin Thanavala Department of Immunology X 8536

Judy Owen • Jenni Punt • Sharon Stranford.

Kuby Immunology SEVENTH EDITION


CHAPTER 5 Innate Immunity

Copyright © 2013 by W. H. Freeman and Company


Innate immunity: most ancient line of defense, some form found in all multi cellular plants and animals.

Adaptive immunity : more recent evolutionary and evolved in jawed vertebrates. It complements innate immunity.

Key Elements of Innate Immunity

Kuby Immunology, Seventh Edition © 2013 W. H. Freeman and Company

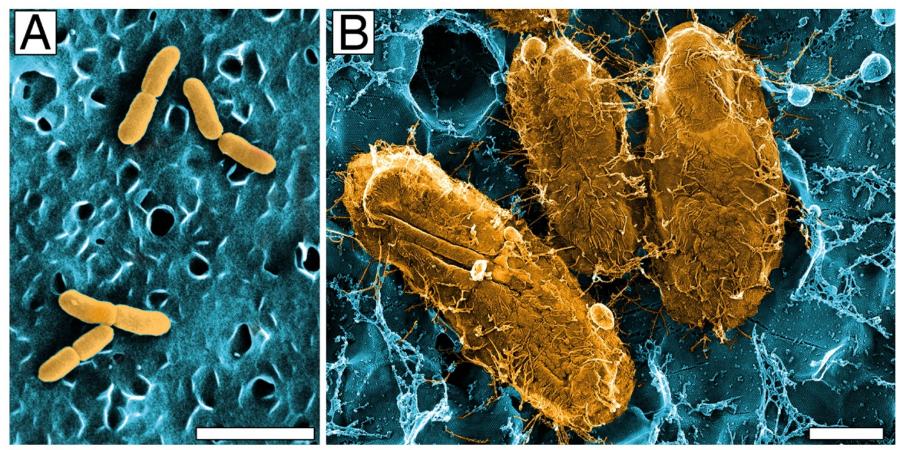
© Elsevier 2005. Abbas & Lichtman: Cellular and Molecular Immunology 5e www.studentconsult.com

r/	ABLE 5-1 Innate and adaptive immunity				
	Attribute	Innate immunity	Adaptive immunity		
	Response time	Minutes/hours	Days		
	Specificity	Specific for molecules and molecular patterns associated with pathogens and molecules produced by dead/damaged cells	Highly specific; discriminates between even minor differences in molecular structure of microbial or nonmicrobial molecules		
	Diversity	A limited number of conserved, germ line– encoded receptors	Highly diverse; a very large number of receptors arising from genetic recombination of receptor genes in each individual		
	Memory responses	Some (observed in invertebrate innate responses and mouse/human NK cells)	Persistent memory, with faster response of greater magnitude on subsequent exposure		
	Self/nonself discrimination	Perfect; no microbe-specific self/nonself patterns in host	Very good; occasional failures of discrimination result in autoimmune disease		
	Soluble components of blood	Many antimicrobial peptides, proteins, and other mediators	Antibodies and cytokines		
	Major cell types	Phagocytes (monocytes, macrophages, neutrophils), natural killer (NK) cells, other leukocytes, epithelial and endothelial cells	T cells, B cells, antigen-presenting cells		

Table 5-1

Kuby Immunology, Seventh Edition © 2013 W. H. Freeman and Company

- Innate and adaptive immune systems have co-evolved and show a high degree of interaction and interdependence.
- If innate immune response is poor, the adaptive immune response will be feeble. In other words, recognition by the innate sets the stage for an effective immune response.
- Innate system includes: physical/anatomical, chemical and cellular barriers.


Skin and other Epithelial Barriers

Organ or tissue	Innate mechanisms protecting skin/epithelium	Skin
Skin	Antimicrobial peptides, fatty acids in sebum	Lacrimal glands
Mouth and upper alimentary canal	Enzymes, antimicrobial peptides, and sweeping of surface by directional flow of fluid toward stomach	Mouth Salivary
Stomach	Low pH, digestive enzymes, antimicrobial peptides, fluid flow toward intestine	glands Airway Lung Epithelial lining of airway and lung
Small intestine	Digestive enzymes, antimicrobial peptides, fluid flow to large intestine	Europe Epithelial lining of alimentary canal
Large intestine	Normal intestinal flora compete with invading microbes, fluid/feces expelled from rectum	Mammary glands
Airway and lungs	Cilia sweep mucus outward, coughing, sneezing expel mucus, macrophages in alveoli of lungs	Stomach Large
Urogenital tract	Flushing by urine, aggregation by urinary mucins; low pH, anti-microbial peptides, proteins in vaginal secretions	intestine Small intestine
Salivary, lacrimal, and mammary glands	Flushing by secretions; anti-microbial peptides and proteins in vaginal secretions	Rectum Urogenital tract

Figure 5-2 *Kuby Immunology*, Seventh Edition © 2013 W. H. Freeman and Company Despite these surface barriers and molecules some pathogens have evolved ways to evade immune defenses.


Via fimbriae or pili (made up of pilin protein) the bacteria interact with glycoproteins or glyolipids only expressed by epithelial cells of the mucous membrane of particular organs.

eg. Influenza virus attaches firmly to respiratory tract cells expressing sialic acid residues of glycosylated receptor proteins via its hemagglutinin; *N. gonorrhorae* attaches to urogenital tract via its pili but also OPA protein which helps the bacteria to adhere within colonies but also adhere to host cells especially those that express CEA.

Figure 5-3 *Kuby Immunology*, Seventh Edition © 2013 W. H. Freeman and Company

Effectors of Innate Responses to infection

Figure 5-6

Kuby Immunology, Seventh Edition © 2013 W. H. Freeman and Company

The immune system:

- 1) Senses/detects the presence of a pathogen
- 2) Mounts a response

Sensors: Soluble or membrane bound molecules (receptors) that recognize *molecular patterns* or motifs absent in the host but present in the pathogen.

Pattern Recognition Receptors (**PRRs**) on host cell recognize Pathogen Associated Molecular Patterns (**PAMPs**).

PAMPs: combination of sugars, lipoproteins and some nucleic acid motifs.

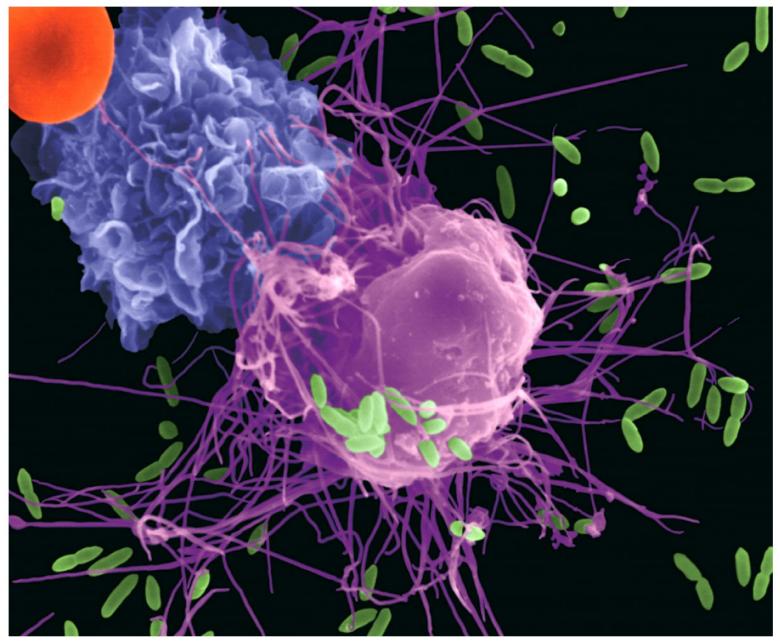
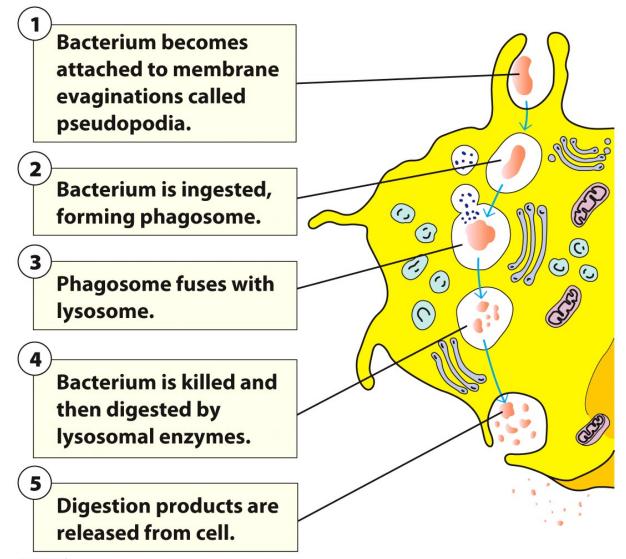



Figure 3-6a Kuby IMMUNOLOGY, Sixth Edition © 2007 W. H. Freeman and Company

Steps in the phagocytosis of a bacterium

Figure 5-5b *Kuby Immunology,* Seventh Edition © 2013 W. H. Freeman and Company

The activation of phagocytosis can also occur indirectly by the phagocyte recognizing soluble proteins (called opsonins) that have bound to the microbes surface thus enhancing phagocytosis.

This process is called **opsonization** (to make tasty).

Once opsonins are bound to the surface of the microbe the are recognized by opsonin receptors on the phagocyte activating phagocytosis.

Receptor type on phagocytes	Examples	Ligands Microbial ligands (found on microbes)	
Pattern recognition receptors			
C-type lectin receptors (CLRs)	Mannose receptor	Mannans (bacteria, fungi, parasites)	
	Dectin 1	β-glucans (fungi, some bacteria)	
DC-SIGN		Mannans (bacteria, fungi, parasites)	
Scavenger receptors	SR-A	Lipopolysaccharide (LPS), lipoteichoic acid (LTA) (bacteria)	
	SR-B	LTA, lipopeptides, diacylglycerides (bacteria <u>)</u> β-glucans (fungi)	
Opsonin receptors		Microbe-binding opsonins (soluble; bind to microbes)	
Collagen-domain receptor	CD91/calreticulin	Collectins SP-A, SP-D, MBL; L-ficolin; C1q	
Complement receptors	CR1, CR3, CR4, CRIg, C1qRp	Complement components and fragments*	
Immunoglobulin Fc receptors	FcαR	Specific IgA antibodies bound to antigen [#]	
	FcγRs	Specific IgG antibodies bound to antigen;*	
		C-reactive protein	

* See Table 6-3 for specific complement components or fragments that are bound by individual receptors

* Opsonization of antibody-bound antigens is an adaptive immune response clearance mechanism

Leukocyte Extravasation

- Rigorously controlled migration of leukocytes from the blood into the tissue.
- Regulated by small molecular mediators, including chemokines and complement proteins, and by cell adhesion molecules.

Rolling and extravasation

Endothelium

Figure 3-7a Kuby IMMUNOLOGY, Sixth Edition © 2007 W. H. Freeman and Company

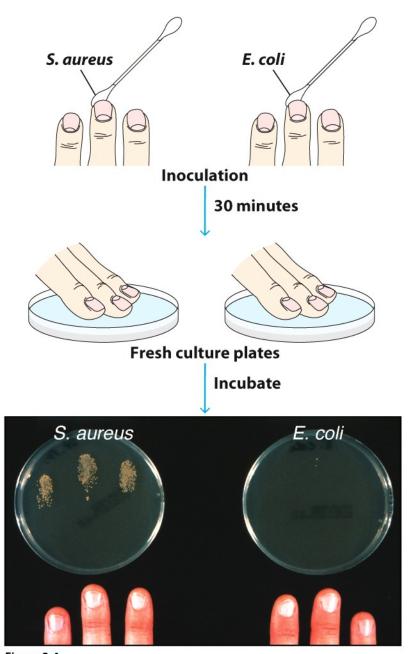

This process will be covered in depth in a later chapter.

TABLE 5-2 Some human antimicrobial proteins and peptides at epithelial surfaces

Proteins and peptides*	Location	Antimicrobial activities	
Lysozyme	Mucosal/glandular secretions (e.g., tears, saliva, respiratory tract)	Cleaves glycosidic bonds of peptidoglycans in cell walls of bacteria, leading to lysis	
Lactoferrin	Mucosal/glandular secretions (e.g., milk, intestine mucus, nasal/respiratory and urogenital tracts)	Binds and sequesters iron, limiting growth of bacteria and fungi; disrupts microbial membranes; limits infectivity of some viruses	
Secretory leukocyte protease inhibitor	Skin, mucosal/glandular secretions (e.g., intestines, respiratory, and urogenital tracts, milk)	Blocks epithelial infection by bacteria, fungi, viruses; antimicrobial	
S100 proteins, e.g.: - psoriasin - calprotectin	Skin, mucosal/glandular secretions (e.g., tears, saliva/tongue, intestine, nasal/ respiratory and urogenital tracts)	- Disrupts membranes, killing cells - Binds and sequesters divalent cations (e.g., manganese and zinc), limiting growth of bacteria and fungi	
Defensins (α and β)	Skin, mucosal epithelia (e.g., mouth, intestine, nasal/respiratory tract, urogenital tract)	Disrupt membranes of bacteria, fungi, protozoan parasites, and viruses; additional toxic effects intracellularly; kill cells and disable viruses	
Cathelicidin (LL37)**	Mucosal epithelia (e.g., respiratory tract, urogenital tract)	Disrupts membranes of bacteria; additional toxic effects intracellularly; kills cells.	
Surfactant proteins SP-A, SP-D	Secretions of respiratory tract, other mucosal epithelia	Block bacterial surface components; promotes phagocytosis	

*Examples listed in this table are all produced by cells in the epithelia of mucosal and glandular tissues; examples of prominent epithelial sites are listed. Most proteins and peptides are produced constitutively at these sites, but their production can also be increased by microbial or inflammatory stimuli. Many are also produced constitutively in neutrophils and stored in granules. In addition, synthesis and secretion of many of these molecules may be induced by microbial components during innate immune responses by various myeloid leukocyte populations (monocytes, macrophages, dendritic cells, and mast cells).

**While some mammals have multiple cathelicidins, humans have only one.

Psoriasin (an anti-microbial protein) prevents colonization of skin by *E.coli*.

Figure 5-4 Kuby Immunology, Seventh Edition © 2013 W. H. Freeman and Company

- Human Defensins: Cationic peptide, 29-35 residues, with 6 invariant cysteines that form disulphide bonds stabilizing the peptide into a relatively rigid three dimensional structure.
- Human defensins kill a variety of bacteria (E.coli, Streptococcus pneumoniae, Pseudomonas aeruginosa, and Hemophilus influenzae), and also attack the envelope of viruses like some herpes viruses and influenza virus.
- Made by paneth cells of the intestine, epithelial cells of the pancreas and kidney.
- Neutrophils are also a rich source of these peptides. Stored in granules where they kill phagocytosed microbes
- Defensins kill rapidly, within minutes.
- Even slowest acting anti-microbial peptide will kill within 90 mins.

Severe fungal infection in a fruit fly: unable to synthesize antifungal peptide drosomycin

Figure 3-8 Kuby IMMUNOLOGY, Sixth Edition © 2007 W. H. Freeman and Company

Components of Innate Immunity

Soluble molecules

- Antimicrobial peptides
- Cytokines
- Complement proteins
- Acute phase response proteins
- Membrane receptors
- TLR
- NOD
- **SR**

Cytokines:

Cyto= *cell*

Kinein= to move

Cytokines bind to specific receptors on the membrane of target cells triggering signal transduction pathways

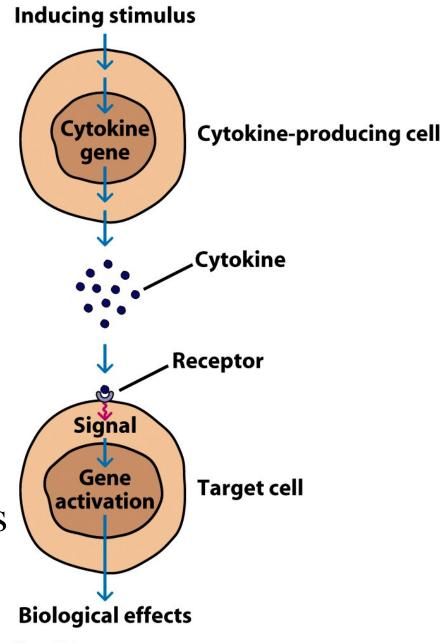
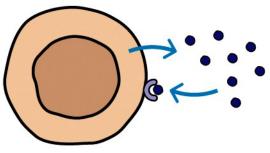
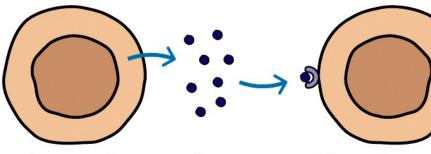




Figure 12-1a Kuby IMMUNOLOGY, Sixth Edition © 2007 W.H. Freeman and Company

Autocrine action

Paracrine action

Nearby cell

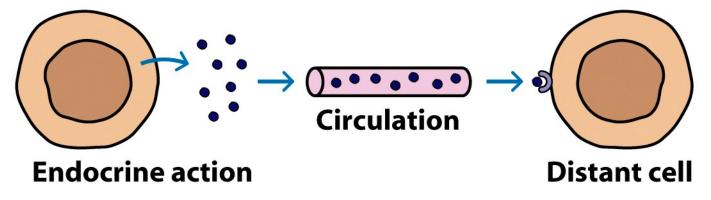
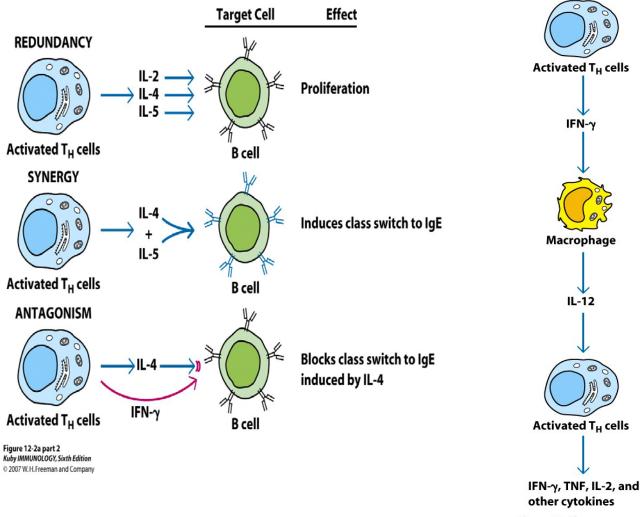
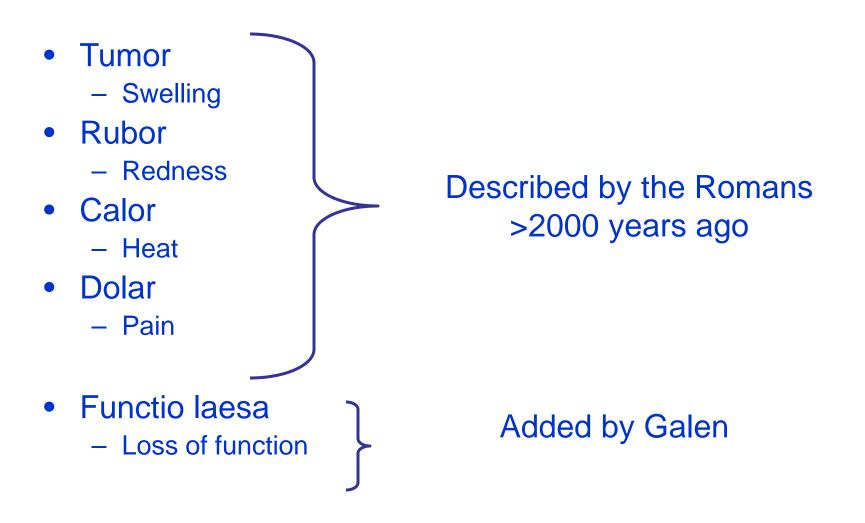


Figure 12-1b Kuby IMMUNOLOGY, Sixth Edition © 2007 W.H. Freeman and Company

Cytokines properties: pleiotropy, redundancy, synergy, antagonism and cascade induction




Figure 12-2b Kuby IMMUNOLOGY, Sixth Edition © 2007 W. H. Freeman and Company

CASCADE INDUCTION

Cytokine [†]	Secreted by [‡]	Targets and effects			
SOME CYTOKINES OF INNATE IMMUNITY					
Interleukin 1 (IL-1) Monocytes, macrophages, Vasculature (inflammation); hypothalamus (fever); endothelial cells, epithelial cells liver (induction of acute phase proteins)					
Tumor necrosis factor-α (TNF-α)	Macrophages	Vasculature (inflammation); liver (induction of acute phase proteins); loss of muscle, body fat (cachexia); induction of death in many cell types; neutrophil activation			
Interleukin 12 (IL-12)	Macrophages, dendritic cells	NK cells; influences adaptive immunity (promotes T _H 1 subset)			
Interleukin 6 (IL-6)	Macrophages, endothelial cells	Liver (induces acute phase proteins); influences adaptive immunity (proliferation and antibody secretion of B cell lineage)			
Interferon α (IFN-α) (this is a family of molecules)	Macrophages	Induces an antiviral state in most nucleated cells; increases MHC class I expression; activates NK cells			
Interferon β (IFN- β)	Fibroblasts	Induces an antiviral state in most nucleated cells; increases MHC class I expression; activates NK cells			
	SOME CYTOKINES OF	ADAPTIVE IMMUNITY			
Interleukin 2 (IL-2)	T cells	T-cell proliferation; can promote AICD. NK cell activation and proliferation; B-cell proliferation			
Interleukin 4 (IL-4)	T _H 2 cells, mast cells	Promotes T _H 2 differentiation; isotype switch to IgE			
Interleukin 5 (IL-5)	T _H 2 cells	Eosinophil activation and generation			
Transforming growth factor β (TGF-β)	T cells, macrophages, other cell types	Inhibits T-cell proliferation and effector functions; inhibits B-cell proliferation; promotes isotype switch to IgA; inhibits macrophages			
Interferon γ (IFN-γ)	T _H 1 cells, CD8 ⁺ cells, NK cells	Activates macrophages; increases expression MHC class I and class II molecules; increases antigen presentation			

*Also note that activated cells generally secrete greater amounts of cytokine than unactivated cells.

Hallmarks of Acute Local Inflammation

Hallmarks of Acute Local Inflammation

• Swelling

 Caused by increased vascular permeability, accumulation of fluid (edema) and extravasation of leukocytes into the area

Redness

 Caused by increased blood volume (vasodilation) and platelet leaking into the area

• Heat

- Caused by increased blood volume

Pain and loss of function

Local inflammatory response is accompanied by a systemic response known as the **Acute Phase response.** This response is marked by the induction of fever, increased synthesis of hormones ACTH and hydrocortisone and increased production of leukocytes and the production of a large number of proteins by the liver called **Acute Phase Proteins**

Acute Phase Proteins made during the acute phase of the response to infection (preceding recovery or death).

eg. C-reactive protein levels increase 1000 fold during an acute phase response.

complement components (C3, factor B, factor D and properdin), mannose-binding lectin (MBL binds to mannose residues on the surface of bacteria, fungi and some viruses) are also acute phase proteins.

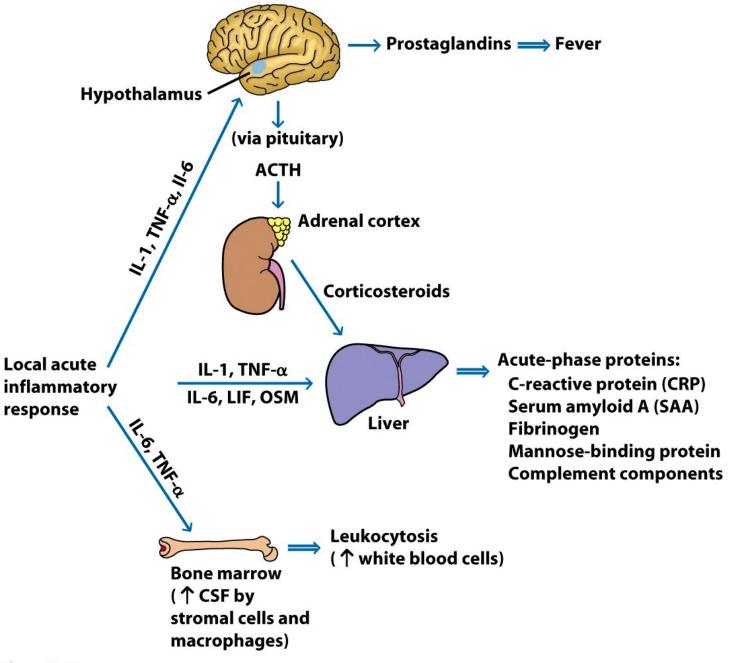


Figure 13-14 Kuby IMMUNOLOGY, Sixth Edition © 2007 W.H. Freeman and Company A connection between inflammation, the immune system and artery disease was first suggested from studies in animals fed an artherosclerosis-inducing diet; lots of leukocytes found firmly attached to the arterial walls.

Now it is know that leukocytes are important in the development of artherosclerotic plaques.

Examination of blood levels of inflammatory markers IL-6, TNF α , CRP and the traditional risk markers (cholesterol, LDL, HDL) followed for 6-8 years in men and women.

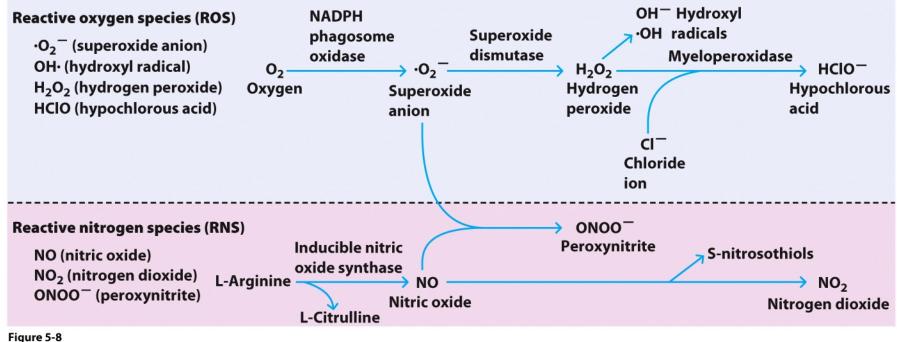
Of the inflammatory markers only CRP levels were found to be associated with higher risk of coronary disease.

Statins which lower cholesterol levels also lower inflammation. Statins result in lowering levels of CRP.

Cell Types of Innate Immunity

Cell type	Neutrophils	Macrophages	Dendritic cells	Natural killer cells
Function	Phagocytosis Reactive oxygen and nitrogen species Antimicrobial peptides	Phagocytosis Inflammatory mediators Antigen presentation Reactive oxygen and nitrogen species Cytokines Complement proteins	Antigen presentation Costimulatory signals Reactive oxygen species Interferon Cytokines	Lysis of viral-infected cells Interferon Macrophage activation

Figure 3-12 Kuby IMMUNOLOGY, Sixth Edition © 2007 W. H. Freeman and Company


Neutrophils

- First line of defense—first cell type that migrates from the blood to the site of infection.
- Essential for innate immunity against bacteria and fungi.
- Anti-microbial activity:
 - Phagocytosis; direct or by opsonization
 - Oxidative and nonoxidate killing
 - <u>Oxidative mechanism</u>: reactive oxygen species (ROS) and reactive nitrogen species (RNS)

ROS include—superoxide ion $\bullet O_2^-$, hydrogen peroxide(H₂O₂), hypochlorus acid (HOCL). ROS generated by the NADPH phagosome oxidase (phox) enzyme complex

- Reaction of nitric oxide with superoxide generates RNS
- <u>Nonoxidative mechanism</u>: neutrophil granules fuse with phagosome releasing their anti-microbial peptides/ proteins (bactericidial permeabilityincreasing protein BPI), enzymes (proteases, lysozymes) that help to destroy the pathogen
- Increased expression of inducible nitric oxide synthetase (iNOS)

Antimicrobial species generated from oxygen and nitrogen

Kuby Immunology, Seventh Edition © 2013 W. H. Freeman and Company

Macrophages

- Activated by TLR binding to their ligand
- Activated macrophages exibit:
 - Increased phagocytosis
 - Increased respiratory burst
 - Increased expression of inducible nitric oxide synthetase (iNOS). iNOS oxidizes L-arginine to Lcitrulline and nitric oxide (NO)
 - Secrete cytokines IL-1, IL-6, and TNF- α
 - Produce complement proteins
 - Express higher levels of MHC class 11 and thereby present antigens to T cells

NK Cell

- Critical first line of defense against viral infections.
- Can distinguish between an infected and uninfected host cell. By killing the virally infected host cell they eliminate source of additional virus.
- Secrete cytokines IFN γ and TNF α
 - these cytokines stimulate maturation of dendritic cells.
 - IFN γ mediates macrophage activation and regulates T_H cell development.

Dendritic Cells

- Critical cells for transition from innate to adaptive immunity.
- Binding of TLRs to recognize pathogens

- this stimulates DC activation and maturation (increased production and surface expression of MHC Class 11 and co-stimulatory molecules).

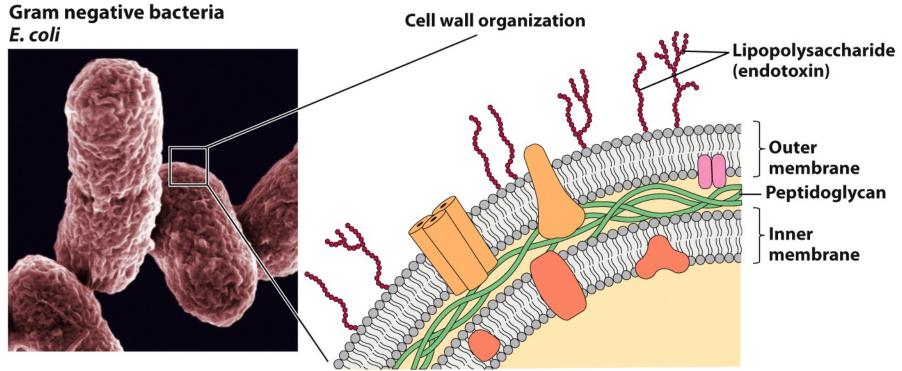
-activated DCs migrate to lymphoid tissue and present antigen to T_H and T_C cells

- DCs can generate ROS and RNS.
- Plasmacytoid DCs are potent producers of type 1 interferons that block viral replication.
- Myeloid DCs produce IL12, IL6 and TNF-α, all potent inducers of inflammation.

The immune system:

- 1) Senses/detects the presence of a pathogen
- 2) Mounts a response

Sensors: Soluble or membrane bound molecules (receptors) that recognize *molecular patterns* or motifs absent in the host but present in the pathogen.


Pattern Recognition Receptors (PRRs) on host cell recognize Pathogen Associated Molecular Patterns (PAMPs).

PAMPs: combination of sugars, lipoproteins and some nucleic acid motifs.

1996: Jules Hoffman and Bruno Lamaitre Cell 86: 973 reported that mutations in Toll made the fruit fly highly susceptible to lethal fungal infection.

1997: Ruslan Medzhitov and Charles Janeway showed that this pathway conserved between fruit flies and humans. Showed that a human protein (TLR4) that they identified by homology of its cytoplasmic domain and that of Toll when transfected into a cell line activated the expression of immune response genes.

1998: Bruce Beutler mutant mice (lps) gene encoded a mutant form of TLR4, resistant to fatal doses of LPS.

Figure 5-10a *Kuby Immunology*, Seventh Edition © 2013 W. H. Freeman and Company

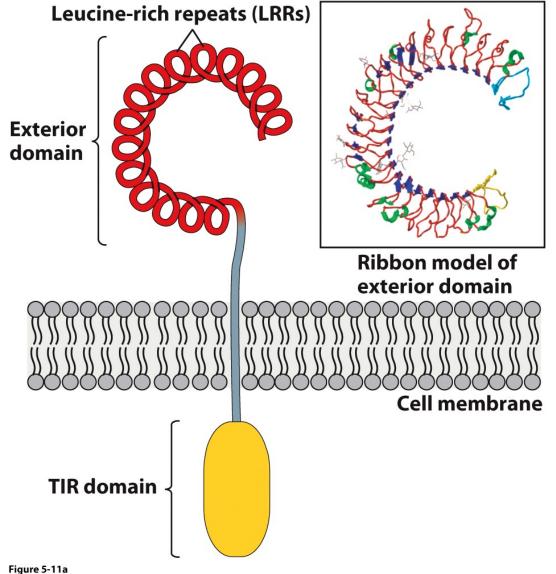

Gram positive bacteria S. aureus Cell wall organization Glycolipids Glycoproteins Peptidoglycan Membrane

Figure 5-10b *Kuby Immunology*, Seventh Edition © 2013 W. H. Freeman and Company

TLRs

- Membrane bound receptors
- Structurally Conserved
 - Multiple leucine-rich regions in extra cellular region
 - Contain conserved TIR (Toll/IL1 receptor) in intercellular domain for signaling.

TLR structure

Kuby Immunology, Seventh Edition © 2013 W. H. Freeman and Company

TABLE 5-4 TLRs and their microbial ligands		
TLRs*	Ligands	Microbes
TLR1	Triacyl lipopeptides	Mycobacteria and Gram-negative bacteria
TLR2	Peptidoglycans GPI-linked proteins Lipoproteins Zymosan Phosphatidlyserine	Gram-positive bacteria Trypanosomes Mycobacteria and other bacteria Yeasts and other fungi Schistosomes
TLR3	Double-stranded RNA (dsRNA)	Viruses
TLR4	LPS F-protein Mannans	Gram-negative bacteria Respiratory syncytial virus (RSV) Fungi
TLR5	Flagellin	Bacteria
TLR6	Diacyl lipopolypeptides Zymosan	Mycobacteria and Gram-positive bacteria Yeasts and other fungi
TLR7	Single-stranded RNA (ssRNA)	Viruses
TLR8	Single-stranded RNA (ssRNA)	Viruses
TLR9	CpG unmethylated dinucleotides Dinucleotides	Bacterial DNA
	Herpes virus components Hemozoin	Some herpesviruses Malaria parasite heme byproduct
TLR10	Unknown	Unknown
TLR11	Unknown Profilin	Uropathogenic bacteria Toxoplasma
TLR12	Unknown	Unknown
TLR13	Unknown	Vesicular stomatitis virus

*All function as homodimers except TLR1, 2, and 6, which form TLR2/1 and TLR2/6 heterodimers. Ligands indicated for TLR2 bind to both; ligands indicated for TLR1 bind to TLR2/1 dimers, and ligands indicated for TLR6 bind to TLR2/6 dimers.

Table 5-4

Kuby Immunology, Seventh Edition © 2013 W. H. Freeman and Company

Function as either hetero or homodimers

Pairing affects specificity TLR1/2 TLR2/6

Location reflects ligands:

TLRs that recognize extracellular ligands are found on the cell surface

TLRs that recognize intracellular ligands are found on the endosome

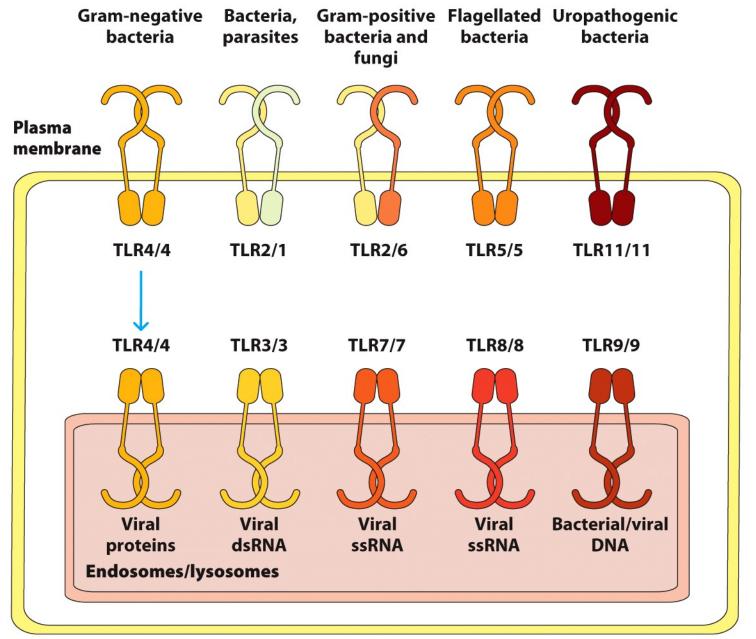
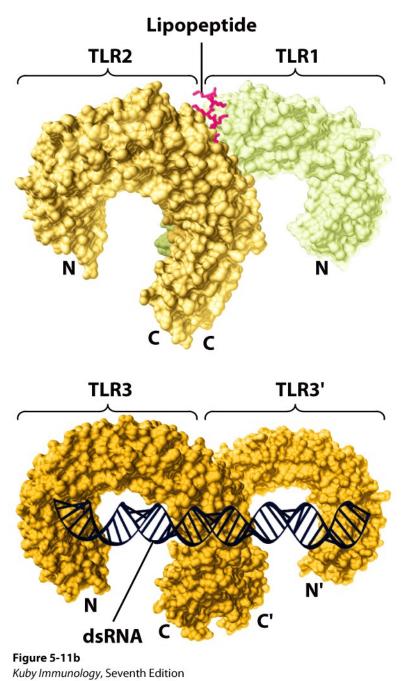



Figure 5-12 Kuby Immunology, Seventh Edition © 2013 W. H. Freeman and Company

© 2013 W. H. Freeman and Company