Current Topics in Prostate Cancer Research

RPN532 (Tang, Dean G.; Pharmacol & Therap)/04/06/2017

Paper for students:

Ku SY et al., Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 355: 78-83, 2017.

Points to discuss:

- *Why do current treatments (ADT) fail Cellular heterogeneity?
- *Prostate cancer genetics: AR & beyond
- *Normal cell lineage: stem cells & their progeny
- *Cancer cell plasticity: Genetic, epigenetic, & treatment-induced

Prostate Cancer Treatments

Charles Huggins ——— Castration (Lupron [leuprolide acetate]/Casodex [bicalutamide])

Patient survival:

	Docetaxel	3.3 months (vs. mitoxantrone)
	Cabazitaxel	2.4 months (vs. mitoxantrone)
	Sipuleucel-T	4.1 months (vs. placebo)
	Abiraterone	3.9 months (vs. placebo)
	Enzalutamide	4.8 months (vs. placebo)
	Radium-223	2.8 months (vs. placebo)
	Ipilimumab	No (vs. placebo after radiotherapy; toxic – more patients died)
	Prostvac	PROSPECT Phase III trial (PSA-targeted IT)/second half of
2017		
	ARN-509	SPARTAN & ATLAS trials??(2019)

2.2 months (vs. mitarontmans)

Clinical treatment of PCa patients by chemical castration and anti-AR drugs (anti-androgens)

New anti-PCa drug development

Points to discuss:

- *Why do current treatments (ADT) fail Cellular heterogeneity?
- *Prostate cancer genetics: AR & beyond
- *Normal cell lineage: stem cells & their progeny
- *Cancer cell plasticity: Genetic, epigenetic, & treatment-induced

AR gene, mRNA, and protein

AR and drug targets

Sadar MD. Cancer Res. 71, 1208 2011

Genomic heterogeneity within localized, multifocal prostate cancer

Mutational landscape of lethal metastatic CRPC

Grasso CS et al., Nature 2012

A global view of advanced PCa genome

Integrative Clinical Genomics of mCRPC

AR splice variants

AR Pre-mRNA Exon 1 2 2b 3 3b 3c 3d 3e 4 5 6 7 8 9

	Variants found in PCa	Domain excluded	Domain- disrupted	Protein MW
AR23	Exon 1 2 2b 3 4 5 6 7 8		DBD	106kDa
AR-V14	Exon 1 2 3 4 5 6 7 9			85kDa
AR-V13	Exon 1 2 3 4 5 6 9		LBD	85kDa
AR-V12	Exon 1 2 3 4 8 9	LBD		84kDa
AR ^{v567es}	Exon 1 2 3 4 8	LBD	LBD	80kDa
AR-V7	Exon 1 2 3 3e	HD to LBD		80kDa
AR-V9	Exon 1 2 3 3d	HD to LBD		80kDa
AR-V5	Exon 1 2 3 3c	HD to LBD		80kDa
AR-V1	Exon 1 2 3 3b	HD to LBD		80kda
AR-V3	Exon 1 2 2b	ZF2 to LBD		75kDa
AR ^{Ex1/2b}	Exon 1 2b	ZF1 to LBD		75kDa

A global view of advanced PCa genome

Points to discuss:

- *Why do current treatments (ADT) fail Cellular heterogeneity?
- *Prostate cancer genetics: AR & beyond
- *Normal cell lineage: stem cells & their progeny
- *Cancer cell plasticity: Genetic, epigenetic, & treatment-induced

Cell lineage development: Self-renewal, proliferation, & differentiation

Phenotypic and developmental plasticity in CSCs and their progeny

Early phase: c-Myc the driving force Intermediate phases: Oct-4 & Sox2

Late (&early) phase: Klf4

Sancho-Martinez I & Izpisua Belmonte JC Nature 493: 310-311, 2013.

Cell-of-origin vs. CSCs

Kreso A & Dick JE. *Cell Stem Cell*, 2014 Rycaj K & Tang DG. *Cancer Res*, 2015

Functional Assays of Cancer Cell of Origin

Points to discuss:

- *Why do current treatments (ADT) fail Cellular heterogeneity?
- *Prostate cancer genetics: AR & beyond
- *Normal cell lineage: stem cells & their progeny
- *Cancer cell plasticity: Genetic, epigenetic, & treatment-induced

PSA AR

Phenotypic & Tumorigenic Heterogeneity of Human PCa cells

PSA AR

Heterogeneity of AR Expression in Untreated PCa & CRPC

Four CRPC models exhibit distinct AR heterogeneity

A

LNCaP, VCaP, LAPC4, LAPC9 tumors grown in intact male mice (AD tumors)

Serially passaged in castrated mice

Primary (1°) CRPC Enzalutamide Tx in castrated mice Secondary (2°)

Four CRPCs respond differently to Enzalutamide

Prostate cancer cell plasticity: Reprogramming by NANOG

NANOG reprograms PSA⁺ PCa cells to PSA^{-/lo}, stem-like CRPC cells by dynamically repressing and engaging AR/FOXA1 signaling axis

Jeter C & Liu B et al., Cell Discovery, 2016

Understanding & Targeting Undifferentiated PCSCs

Combinatorial therapies targeting both AR⁺ bulk AND PCSCs to prevent cancer cell plasticity

