Cellular Immunotherapy for Cancer

Beer B

ROSWELL PARK

Distance in case

Joseph Skitzki MD, FACS March 22nd, 2016

Objectives

- explain the rationale behind cellular adoptive immunotherapy
- describe methods of improving cellular adoptive immunotherapy
- identify mechanisms of tumor escape from cellular adoptive immunotherapy

skin, mucosal barriers
complement
neutrophils, NK cells, mast cells, basophils, eosinophils T cell mediated
CD8 cytotoxic
CD4 helper
B cell mediated
antibody production

Cancer as an immune target

Evidence - unique cancer antigens - immunosuppression - "immune editing"¹ --- elimination phase - equilibrium phase - escape phase

¹Immunity 2004 21(2):137-148

Benefits of Immunotherapy

relatively non-toxic therapy
exquisitely specific
curative/adaptive
long lived protection/memory

Immunotherapy for Cancer

Advantages of Passive Cellular Approach

Pros

- feasible

- activation and expansion without dampening factors
- supraphysiologic numbers of cells

<u>Cons</u>

- labor intensive
- expensive
- too artificial(?)
- transient cell viability
- no 'off-the-shelf' ability
- ex vivo genetic manipulation of cells

Advantages of Passive Cellular Approach

Advantages of Passive Cellular Approach

Pretreatment

Immunotherapy for Cancer: 1970-1980

- Rosenberg et al². cultured mononuclear fraction of peripheral blood (leucopheresis) with IL-2
 generated lymphokine-activated killer cells (LAK)
 LAKs found to be NK cells
- when given with exogenous IL-2 clinical responses
 improved with cyclophosphamide or TBI^{3,4}

²Cancer Res 1981; 41: 4420-4425. ³J Immunol 1985; 135: 646-652. ⁴Science 1986; 233: 1318-1321.

Immunotherapy for Cancer: 1980-1990

Rosenberg et al⁵. – cultured tumor suspension in IL-2
generated tumor-infiltrating lymphocytes (TIL)
TILs determined to be mostly CD8 T cells
when given with exogenous IL-2 – clinical responses
50-100x more effective than LAK cells

⁵J Natl Cancer Inst. 1987; 79(5): 1067-1075.

Immunotherapy for Cancer: 1990-2000

optimal source of T cells? tumor draining lymph nodes (TDLN)⁶ vaccine primed lymph nodes (VPLN)

⁶Cancer Immunol Immunother. 1995; 83(1): 45-51.

Immunotherapy for Cancer: 2000-present

2 major areas –

Host – limits of immunodepletion prior to adoptive transfer

Effector – Genetically engineered T cells

Immunodepletion prior to adoptive transfer

eliminate competition for cytokines⁷
eliminate suppressor cells (Tregs)
generates maturation of dendritic cells
increase in tumor antigen display

⁷J Immunother. 2010; 33(1): 1-7.

Immunocompetent host

Non-myeloalative preconditioning

Myeloalative preconditioning

Genetically engineered T cells

co-stimulation is complex and necessary

Antigenicity vs. Immunogenicity

Antigen:APC T cell interaction, no costimulation

Antigen:APC T cell interaction with costimulation

Result – T cell anergy, apoptosis, or Suppression (Treg) **Result – T cell activation, clonal expansion effector functions**

T cell activation and tumors

TUIMOT AMHORM

7.7BB

CD8+ T cell

-D3 CD8 CD28

tumor cell

co-stimulation required for full activation

Unlikely to occur

- loss of MHC I

- lack of co-stimulatory molecules

Bypass activation requirements and TCR

"CAR" Chimeric Antigen Receptor

T cell activation and tumors

HIMOR AMHORIN

J8+ T cell

Ser

Que

co-stimulation required for full activation

tumor cell

<u>Unlikely to occur</u> - loss of fit i tumor cell killing - lack of co-stimulatory molecules

CAR activity

	Zeta only	28:z	41BB:z	28:41BB:z
kill	++	++	++	++
cytokine	+	+++	++	+++
Prolifera- tion	+	+++	+++	+++
In vivo survival	+	++	+++	+++

Other methods of engineering T cells

Adoptive Immunotherapy - Summary

Not limited to CD8 T cells

Response rates (not cure rate)

1994 – 34% with TIL

49% with TIL + immunodepletion

72% with TIL + immunodepletion + TBI

Why does adoptive immunotherapy fail?

- poor antigen display by tumor
- antigen loss
- hostile tumor microenvironment
- immune tolerance
- regulatory T cells
- insufficient numbers/persistence of cells
- inability to access tumors limited lymphocyte trafficking

Antigen Loss

J Immunother. 2003 ; 26(5): 385-393.

Cell Transfer Therapy for Cancer: Lessons from Sequential Treatments of a Patient With Metastatic Melanoma

Steven A. Rosenberg^{*}, James C. Yang^{*}, Paul F. Robbins^{*}, John R. Wunderlich^{*}, Patrick Hwu^{*}, Richard M. Sherry^{*}, Douglas J. Schwartzentruber^{*}, Suzanne L. Topalian^{*}, Nicholas P. Restifo^{*}, Armando Filie[†], Richard Chang[‡], and Mark E. Dudley^{*} *Center for Cancer Research, Surgery Branch, National Cancer Institute, National Institute of Health, Bethesda, Maryland

Center for Cancer Research, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland

Diagnostic Radiology Department, Clinical Center, National Cancer Institute, National Institute of Health, Bethesda, Maryland

A unique case study

- 1997 27 year old female with melanoma of the eyelid
- excised, but recurred in 1999
- treated with superficial parotidectomy, cervical lymph node dissection, 60 Gy to her face and neck, and biochemotherapy – chemo + IL-2 + alpha-interferon
- disease progressed referred to NCI in 2000

Treated with peptide vaccine and IL-2

Adoptive transfer x5

Treatment #1 – <u>autologous lymphocytes</u>
- 1 source – PBL
- reactive gp100
- immunodepletion prior
- 1x10¹⁰ cells injected i.v.
- minimal response

January 2001

Lymphodepletion improves response

Treatment #2, #3 – <u>autologous lymphocytes</u>
2 sources – PBL + TIL
reactive gp100, MART-1
immunodepletion prior to #3
~4x10¹⁰ cells injected i.v.
improved response

Lymphocyte trafficking is important

Treatment #4 – <u>autologous lymphocytes</u>
2 sources – PBL + TIL
reactive gp100, MART-1
immunodepletion prior
~4x10¹⁰ cells injected i.a.
much improved response

Antigen loss is real and leads to tumor escape

Treatment #5 –

 Patient refused surgery for growing nodules of neck

died of progressive melanoma December
 2001

- no response

- tumor biopsy revealed a single point mutation and loss of HLA-A2 antigens

Hostile Tumor Microenvironment

Adenosine
Indolemine 2,3 dioxygenase (IDO)
hypoxic
acidotic
lack of co-stimulation/cytokines

damaged tissues – nucleotidases
ATP/AMP converted to adenosine
A1, A2A, A2B, and A3 receptors
inhibits activation and expansion of T cells⁸
"Hellstrom paradox"
normally a protective mechanism

⁸PNAS 2006; 103(35): 13132-13137.

⁸Int J Oncol 2008; 32(3): 527-35.

- Tregs – CD39 and CD73 – sequentially catalyze to generate adenosine

Effects of adenosine receptor-mediated, so

- physiologic doses

⁸PNAS 2006; 103(35): 13132-13137.

metabolizes tryptophan
responsible for tumor tolerance⁹

primary tumor site
draining lymph node

normally – upregulated in APC in response to INF-γ (negative feedback loop)
major mechanism of Treg

Tryptophan catabolic pathways

IDO dysregulated in tumor due to Bin1 loss 1MT inhibitor of IDO in clinical trials

Mechanism of IDO gene regulation

Feed forward mechanism – Treg $\leftarrow \rightarrow$ DC

typically CD4(+)CD25(+)FOXP3(+)
can be antigen specific
mediated via IDO to affect other T cells and APC
depletion prior to AT has proven efficacy

Senescence

Insufficient numbers/persistence of transferred cells

- T cells close to senescence by time of adoptive transfer

¹¹J Immunother. 2011; 3(3): 407-421.

Insufficient numbers/persistence of transferred cells

- less differentiated "younger" better?

¹¹J Immunother. 2011; 3(3): 407-421.

Insufficient numbers/persistence of transferred cells

Persistence in vivo beneficial
Telomere regulation via "shelterin"
control telomerase activity → "immortal" T cell?

¹¹J Immunother. 2007; 30(1): 123-129.

Limited trafficking into tumor

Limited lymphocyte trafficking to tumor

cell mediated killing requires direct contact
tumor vessels are grossly abnormal
normal physiologic mechanisms of lymphocyte trafficking nearly impossible

Abnormal tumor vasculature as means of immune escape

Healthy vessel

J.

Well organized Defined arterioles and venules Regularly distributed Non-dilated Non-permeable Mature and coated with mural cells Low interstitial pressure Complete basement membrane Endothelial cell and mural cell Appropriate expression of markers Normal rate of blood flow

STATISTICS OF THE STATISTICS O

Tumor vessel

Disorganized Undefined arterioles and venules Unevenly distributed Dilated Highly permeable Premature and lack of mural cells High interstitial pressure Lack basement membrane Mosaic cells High or low expression of markers Sluggish blood flow Lymphocyte trafficking in preclinical models

Current models of trafficking of lymphocytes selectins \rightarrow chemokine receptors \rightarrow integrins

Methods of following lymphocyte movement -

radiolabeled cells cell surface marker variation fluorescent tracking dyes genetic variations

How does one study T-cell trafficking in vivo?

Intravital microscopy (IVM)

Intravital microscopy (IVM)

Intravital microscopy (IVM)

Intravital microscopy (IVM) lymph node

Intravital microscopy (IVM) tumor

1hr

4hr

A picture is worth a thousand graphs . . .

PE-KO mice

Why does adoptive immunotherapy fail?

- poor antigen display by tumor
- antigen loss
- hostile tumor microenvironment
- immune tolerance
- regulatory T cells
- insufficient numbers/persistence of cells
- inability to access tumors limited lymphocyte trafficking

Questions?

Suggested reading

Rosenberg SA et al. Cell transfer therapy for cancer: lessons from sequential treatments of a patient with metastatic melanoma. J Immunother. 2003; 26(5): 385-393.

Ohta A et al. A2A adenosine receptor protects tumors from antitumor T cells. PNAS. 2006; 103(35):13132-13137.

Katz JB et al. Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape. Immunological Reviews. 2008; 222:206-221.

Gattinoni L et al. Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol. 2006; 6(5):383-393.