

Cancer Imaging

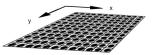
Mukund Seshadri, DDS, PhD Professor of Oncology Depts. of Pharmacology & Therapeutics Oral Medicine/Head and Neck Surgery Mukund.Seshadri@roswellpark.org Ph: 716-845-1552

2/16/2017

What is an image? What is an image?

What is an image?

2D rectilinear array of pixels



www.rocwollpark.ord

Rows and columns of image points or picture elements (pixels)

•		••			•			•	20100	1
٦	Λ	A a	12	•	ıc	a	n	ıv		
-			ıa		13	a	•	10		

Smallest constitutive element of a digital image

Pixel dimension

i.e. how many pixels does the image have horizontally and vertically (x, y)
Actual size of the image file

www.zmb.unizh.ch Basic Introduction to Image Processing

Resolution and Pixel dimension

Resolution

Specifies the spatial dimensions of the image Often expressed as number of image elements per measurement (dpi or ppi)

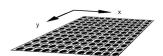
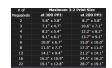

Resolution = Pixel dimensions/physical dimensions For example.

Image dimension = 10 x 7.5 inches Pixel dimension = 720 x 540 Resolution = ____ dpi?

Higher the DPI or PPI, the more detail (higher resolution)

maging Essentials - Research Imaging Solutions, it.med.harvard.edu

Pixel dimensions


Pixels per inch (PPI) or Dots per inch (DPI)

- Output (printer)or display capabilities (monitor)
- # of pixels (or dots) in a printed inch (x or y)
- DPI: Multiple dots are needed to create a pixel (dithering)
- Images will require more DPI than PPI to show same degree of detail

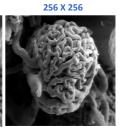
www.zmb.unizh.ch Basic Introduction to Image Processing

Pixel dimensions

How many of you have smart phones? Digital cameras – 2 MP → 16 MP What does that mean?

Mega pixel (MP) = million pixels

For a certain resolution (PPI), there is a maximum print size you can get for a given number of MPs.

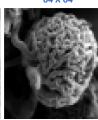

e.g. iPhone 6 has a 8MP camera @300 PPI: 8 MP camera → 11.5 x 7.7 (3:2 print size)

http://www.cambridgeincolour.com/tutorials/digital-camera-pixel.htm

Resolution

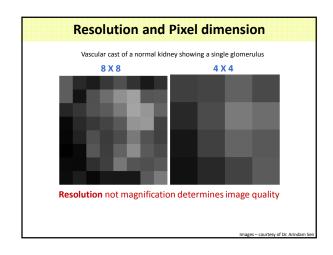
Vascular cast of a normal kidney showing a single glomerulus

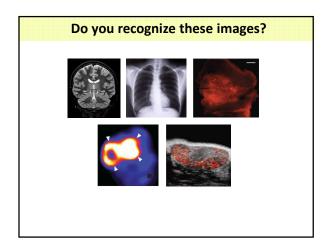
512 X 512

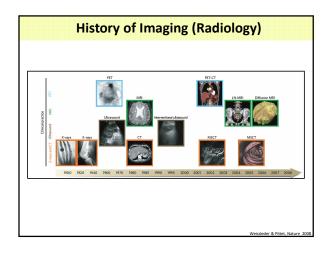

Resolution not magnification determines image quality

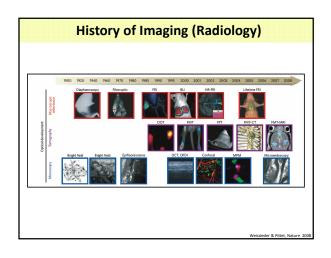
Images – courtesy of Dr. Arindam Ser

Resolution


Vascular cast of a normal kidney showing a single glomerulus


128 X 128




Resolution not magnification determines image quality

Images – courtesy of Dr. Arindam S

Table 1. Characterist	ics of imaging moda	lities used in the cli	nic		
Imaging modality	Spatial resolution	Limit for depth of imaging	Sensitivity estimates	Agent/probe used	Amount of agent ^a
PET	1–2 mm	No	10 ⁻¹¹ -10 ⁻¹² м		Nanograms
SPECT	1-2 mm	No .	10 ⁻¹⁰ -10 ⁻¹¹ M		Micrograms
Optical/fluorescence	~1/10 of depth of imaging	Up to 10 cm ^b	10 ⁻⁹ -10 ⁻¹¹ м	Fluorescence	Micrograms to milligrams
Ultrasound	50-500 μm	No?c	_d	Gas-filled bubbles Paramagnetic	Micrograms to milligrams
MRI	25-100 μm	No		or ferromagnetic	Milligrams to grams
CI	50-200 μm	No	10 ⁻² -10 ⁻³ m ^f	lodine ⁹	Grams
'Reduced signals from	flectance imaging; un deep tissues, deper on bubble size and IO may have sensitiv d; less sensitive than	p to approximately nding upon the freq structure, and the fr rity close to SPECT. MRI; not sensitive e	10 cm with fluo uency used. equency used; s nough for MI.	rescence tomographic to	

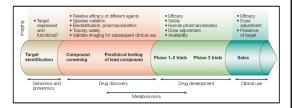
Radiology in Medicine (Oncology)

Radiation Oncology

- Identification of tumors to be irradiated
- Accurate delivery of radiation to the target (tumor)

Goals

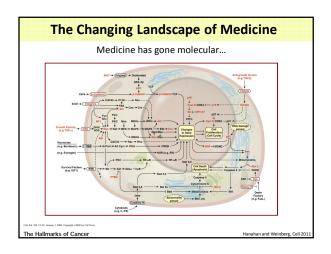
Delineation of patient anatomy (desired radiation target) and organs at risk that should be spared from radiation dose.

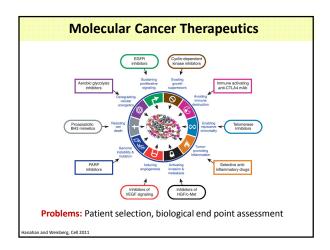

Identified volumes are then used to compute

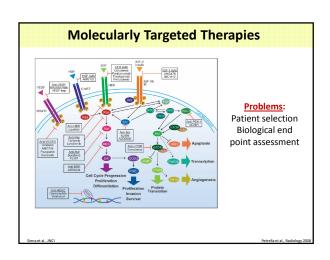
an optimal radiation treatment strategy.

Radiology in Medicine (Oncology)

Drug Discovery and Development


Radiologic Assessment


RECIST: Response Evaluation Criteria In Solid Tumors



- ✓ Simple ruler measurements
- √ Common language of efficacy

Great!! So what is the problem?

Diagnostic Prognostic Radiology

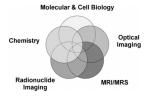
Is RECIST good enough?

Traditional cytotoxics vs. modern cytostatics

Does not account for morphologic complexity; tumor heterogeneity

Tumor shrinkage alone may not be a sensitive measure of biological activity

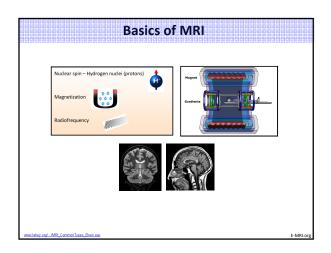
Volumetric change is better – a late, non-specific end point

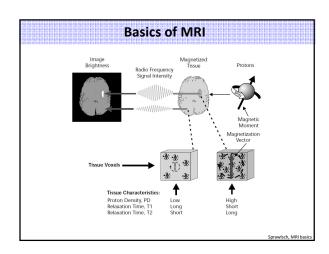

Clinical need: Early Response Indicators (Imaging Biomarkers)

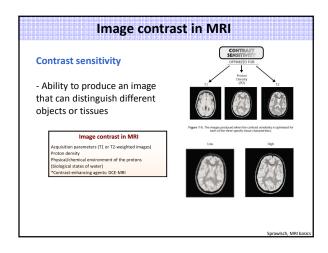
The changing landscape of Radiology

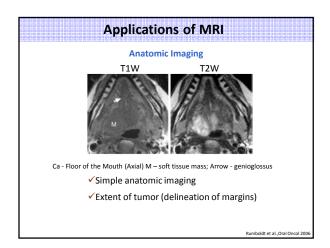
Molecular Imaging

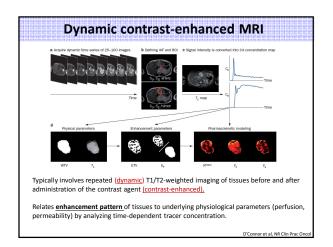

Visualization, characterization and measurement of biological processes at the molecular and cellular levels in humans and other living systems.

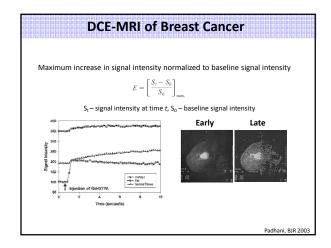

(includes 2D and 3D imaging and quantification over time)

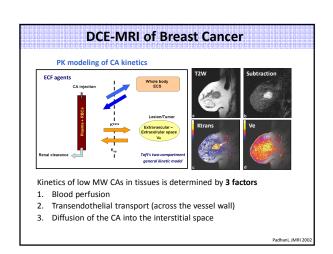


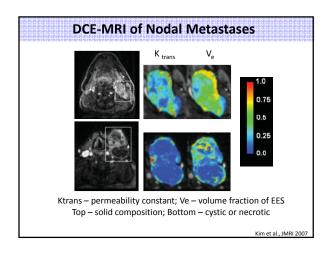

Molecular Imaging Definitions Task Force

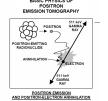

Functional Molecular Imaging Normal Production of Management Control of Management Con










Positron	Emission '	Tomograp	hy
		0 1	

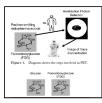
Basics of PET

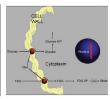
A compound labeled with a positronemitting radionuclide is introduced into the body, usually by intravenous injection.

When one of the radionuclide atoms decays, a positron is emitted, travels a very short distance in tissue (typically 0^{-1} - 10^0 mm for radionuclides of interest), and annihilates with an electron in the tissue.

The mass of the two particles is converted into energy, which is emitted in the form of two back-to-back 511 keV gamma rays

Basics of PET




Radionuclide	Half-life	Production
11C	20.3 min	Cyclotron
13N	9.97 min	Cyclotron
15O	122 sec	Cyclotron
18F	109.8 min	Cyclotron
62Cu	9.74 min	62Zn/62Cu generator
⁶⁴ Cu	12.7 hr	Reactor, cyclotron
⁶⁸ Ga	68.1 min	68Ge/68Ga generator
76Br	16.1 hr	Reactor, cyclotron
124	4.17 days	Reactor, cyclotron

A positron emission tomography scanner consists of a ring, or multiple rings, of gamma ray detectors that register simultaneous gamma ray hits and their location, thus defining the line along which the positron-emission took place. By collecting large numbers of gamma-ray pair events (typically 10^6 to 10^7) and using computed tomography methods, cross-sectional images reflecting the concentration of the positron-emitting radionuclide can be generated.

therry and Gambhir, ILAR 2001

Basics of PET

¹⁸FDG is taken up in facilitated transport by metabolically active cells via glucose transporters (Glut) in cell membrane. In cell cytoplasm, 18FFDG undergoes phosphorylation to form FDG-6-phosphate (FDG-6-P) that, unlike glucose, cannot undergo further metabolism and becomes trapped in cell with only negligible amount of FDG-6P diffusing from cells.

Rosen et al., Radiographics

apport at all AIR 2005

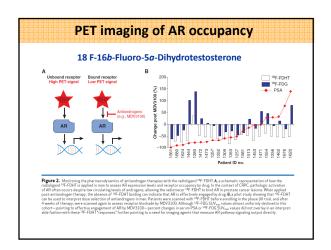
Basics of PET

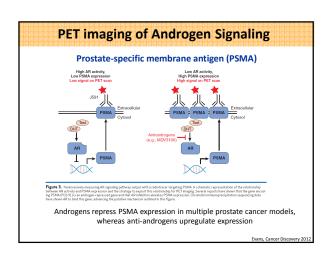
Radiotracer	Label	Half-life (hours)	Application
Choline	11C	0.34	Choline metabolism
Acetate	11C	0.34	Fatty acid/sterol metabolism
Tyrosine	"C	0.34	Amino acid metabolism
Methionine	11C	0.34	Amino acid metabolism
Ammonia	13N	0.17	Vascular perfusion
Water	15O	0.03	Vascular perfusion
FDG	18F	1.83	Glucose metabolism
FLT	¹⁸ F	1.83	Cellular proliferation
FHBG	¹⁸ F	1.83	Gene expression
FIAU	18F	1.83	Gene expression
Galacto-RGD	18F	1.83	Angiogenesis
Dimeric-RGD	18F	1.83	Angiogenesis
FMISO	¹⁸ F	1.83	Hypoxia
FAZA	¹⁸ F	1.83	Hypoxia
EF5	18F	1.83	Hypoxia
Cu-ATSM	64Cu	12.70	Hypoxia
Cu-PTSM	64Cu	12.70	Vascular perfusion

therry and Gambhir, ILAR 2001

PET in Clinical Oncology

FDG PET/CT of Head and Neck Cancers

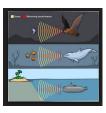


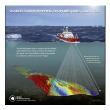

A Auti mage from ***100 PET portion of examination shows interns hypermetabolism (arrowheeded at the of primary turnor and right new, consistent with matignant.

B and C, Avel context-enhanced C (III) and fund ***100 PETC (II) images above large larguesia mass terrowheede. B and C invading adjacent context-enhanced C (III) and fund ***100 PETC (II) images above large larguesia mass terrowheede. B and C invading adjacent context-enhanced C (III) and fund ***100 PETC (III) images above large larguesia mass terrowheede. B and C invading adjacent context-enhanced context-enhanced C (III) and fund ***100 PETC (III) images above large larguesia mass terrowheede. B and C invading adjacent context-enhanced C (III) and III an

Kapoor et al AJR 2005

PET imaging of receptor expression Dotado Vege Per State St





Ultrasound

Ultrasound 101

- \bullet Ultrasound (US) refers to oscillating sound pressure waves greater than the limit detectable by the human ear [20-20,000 cycles/sec (Hz)]
- Bats can detect beyond 100 kHz (echolocation)
- SONAR (Sound navigation and ranging)

www.askabiologist.asu.edu

British Antarctic Sur

Ultrasound Imaging

- US imaging utilizes interaction of sound waves with living tissue
- \bullet Non-invasive tool that can provide structural and functional information
- Variety of medical applications

oatney, ILAR 200

Ultrasound Imaging Systems

Basic Components

- 1 CPU
- 2. Transducer (transmits and receives signal)
- 3. Image storage unit

VisualSonics Corporation (FUJIFILM)

Ultrasound Imaging Systems

The transducer produces the US beam as a slice
Beam profile (~1 mm thick)

User controls displayed depth

Direction of the beam is controlled by the operator (aimed at the target)

The vibrational energy of the mechanical oscillations (transducer) is directed into the scanned object and swept back and forth

The reflected signal from tissue interfaces (echoes) are detected by the transducer and transformed into electrical signals that are processed by a

receiver to create an image.

The return of an echo depends mainly on the type of scanned object/tissue and penetration depth.

VisualSonics Corporation (FUJIFILM

Biophysical Basis for US Imaging

Transmission of sound waves through a tissue is related to its acoustic impedance of each tissue (product of transmission velocity and tissue density).

However, transmission velocity in most soft tissues and blood is relatively uniform (1540 m/s; Merritt, 1998).

Therefore, the major determinant of acoustic impedance is tissue density.

Differences in tissue densities causes differences in the sound waves reflected and received by the transducer

oatney, ILAR 2001

Biophysical Basis for US Imaging

Tissue homogeneity also interaction of sound waves

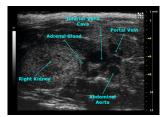
Bone (4080 m/s) --- Tissue (1540 m/s) - Gas (330m/s)

The greater the acoustic mismatch or difference in tissue densities, the more sound waves are reflected and returned to the transducer.

Largest acoustic impedance mismatch -> Bone-Gas (majority of sound waves to be reflected – decreases penetration/causes artifacts)

Carina Li, http://www.usgraweb.hk

natney II AR 200


Spatial Resolution in US

• Diagnostic US (2-15 MHz)

VisualSonics Corporation (FUJIFILM)

Biophysical Basis for US Imaging

Strong reflections (hyperintense) – brighter (bone/diaphragm)

No reflection – dark/black dots (fluid/blood)

Ultrasound imaging is best suited for soft tissue imaging

Seshadri lab

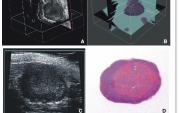
Coatney, ILAR 201

Applications of US Imaging

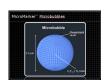
Anatomic Imaging

- Tumor volume
- Image-guided interventions

Functional Imaging

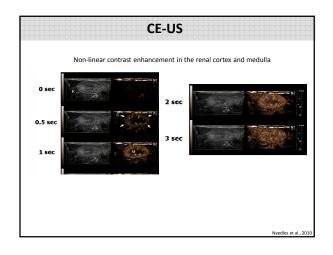

- Tumor vascularity
- Perfusion/oxygenation

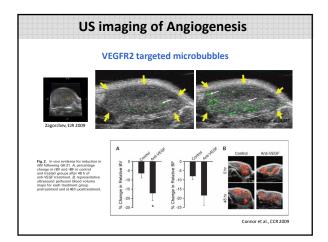
- Molecular Imaging
 Targeted contrast agents
- Biomarkers of response

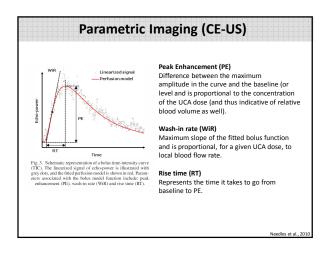

alSonics Corporation (FUJIFILM)

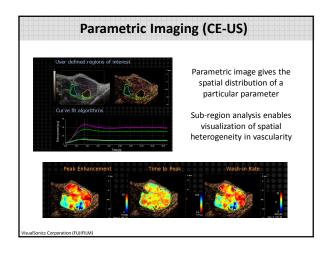
3D US of Prostate Cancer

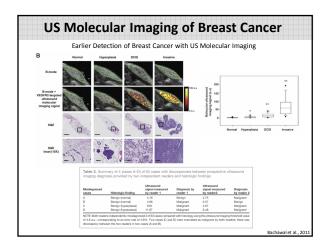
Contrast-enhanced US (CE-US)

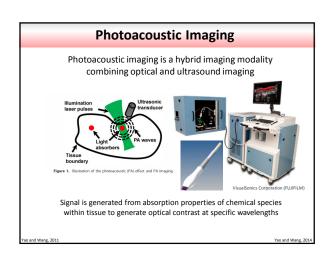

Microbubbles (Ultrasound contrast agents)

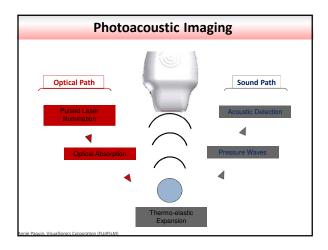


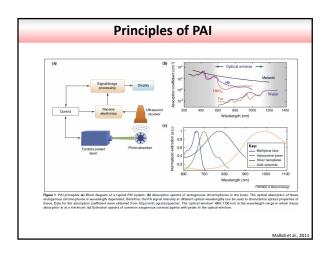

Lipid-shelled microspheres ~2.5 μm in diameter containing perfluoropentane

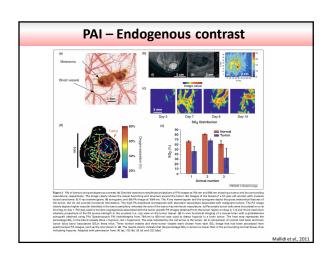

Provide far greater contrast than RBC (imaging

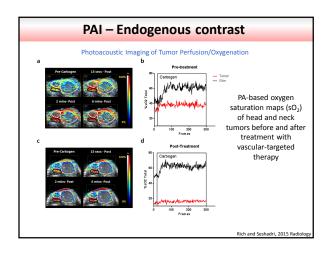

0

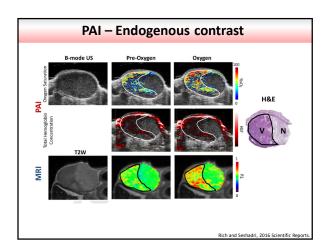


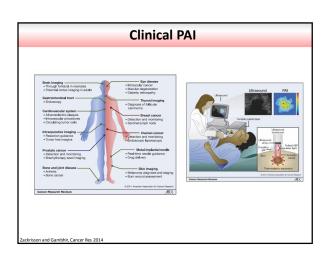


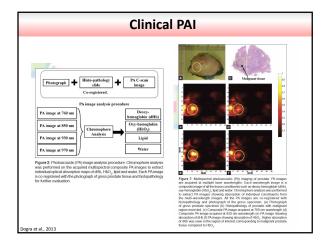


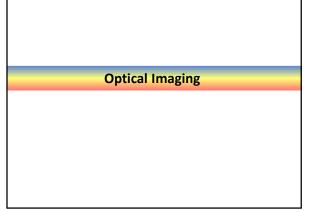


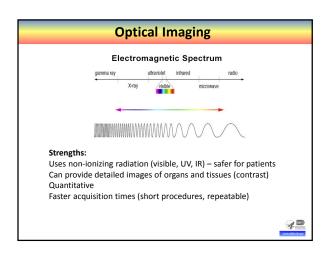


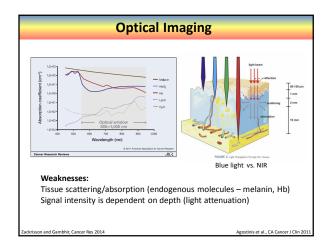










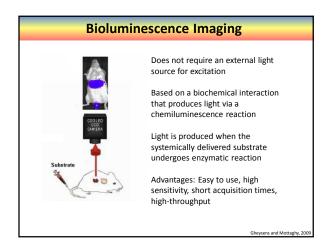


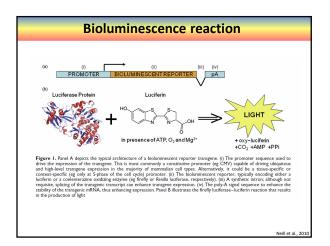
Optical Imaging

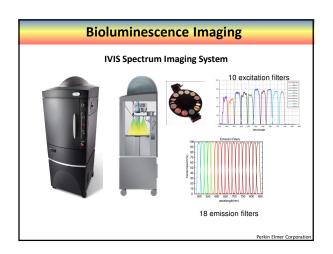
Fluorescence imaging

Bioluminescence imaging

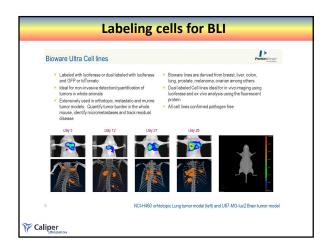
Based on light emission
Use a charged coupled device (CCD) camera to collect photons

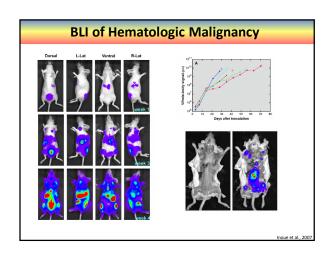

But there are differences in sensitivity and specificity

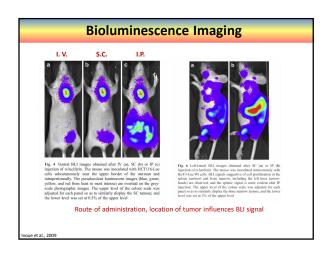

Image acquisition is generally performed in 2D (Advances in hardware have made 3D tomography possible)

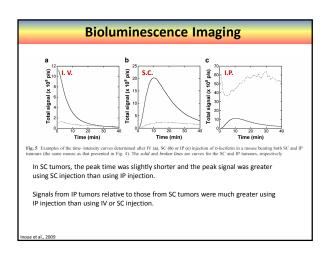

Both methods have advantages and limitations

Gheysens and Mottaghy, 2

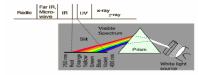

Reporter Molecules Luciferase Fluorescent Proteins Fluorescent Proteins Fluorescent dyes Fluorescent dyes Fluorescent Proteins Label Proteins Label Proteins Label Proteins Label Proteins Label Proteins Label Proteins Kevin Francis, PhD - Pertia Elmer





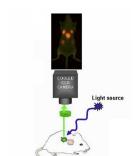

Application	Example
Animal models	Xenograft, orthotopic, and GEM models of human cancer have been developed which express luciferase
Drug development	BLI allows therapeutic efficacy of cancer drugs to be established
Monitoring of genes	Luciferase-labelled cells may be used to monitor gene delivery and gene expression <i>in vivo</i> Genetic screening has also been performed using BLI, allowing identification of specific oncogenes
Tumour development	BLI may be used to study processes such as angiogenesis, apoptosis, and adhesion in cancer cells
Metastasis	High sensitivity of BLI allows the imaging of metastasis and minimal residual disease states in cancer models
Protein interactions	BLI has been used to image protein—protein interactions in vivo

Caveats Serum stability of luciferases (several mutations have been screened to identify luciferases with high light output and stability) Route of administration influences substrate availability and therefore the signal detected Timing of administration is critical for longitudinal experiments Sites – heart can obscure signal from the liver



Fluorescence Imaging

'Fluorescence' – introduced by Sir George Gabriel Stokes (Physicist and Professor of Mathematics)

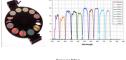

Stokes used a prism to disperse the solar spectrum and illuminate a solution of quinine. He noted that there was no effect until the solution was placed in the ultraviolet region of the spectrum.

www.fluorescence-foundation.org

Re-emission (fluorescence) is of longer wavelength photons (lower frequency or energy) by a molecule that has absorbed photons of shorter wavelengths (higher frequency or energy) – This displacement is **the Stokes Shift**

Fluorescence Imaging

Involves excitation of an injected fluorophore (dye)


The fluorophore returns to the ground state through different pathways

Fluorescent light is emitted upon spontaneous emission of a photon

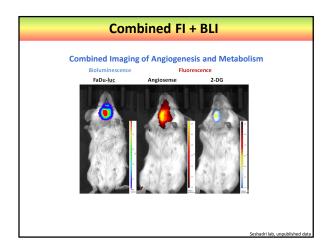
Light emission is detected by a CCD camera using the appropriate emission filters

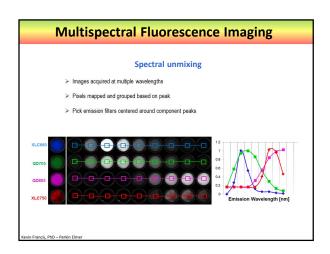
Gheysens and Mottaghy, 20

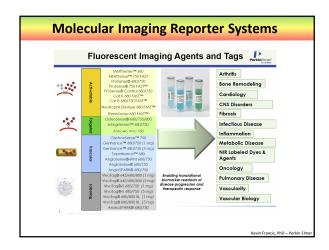
Fluorescence Imaging

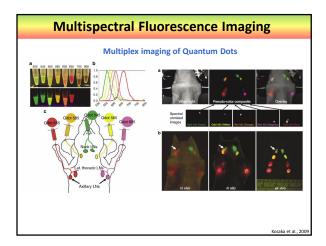
Limitations

Background autofluorescence Need to distinguish signal from endogenous molecules (Hb; 400-600) vs. exogenous agents. Often overlapping absorption spectra


Solutions


Near-infrared fluorophores (minimal autofluorescence) Multispectral imaging – enables simultaneous imaging of multiple fluorophores (multiplexing)


Kevin Francis, PhD – Perkin Elmer

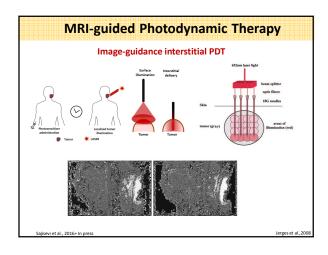

Gheysens and Mottaghy, 20

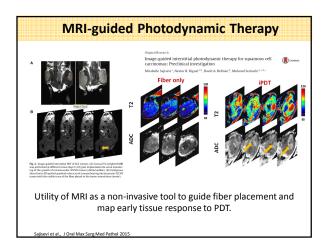
lmage-guided	Interve	ntions	

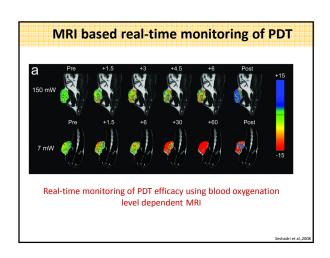
Photodynamic Therapy (PDT)

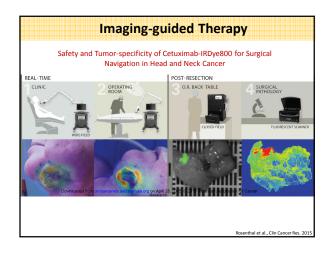
- Food and Drug Administration (FDA) approved treatment for a variety of oncologic and non-oncologic conditions originally developed at Roswell Park (*Dougherty, 1974*).
- Involves photoactivation of a tissue-localized drug by light of a specific wavelength.

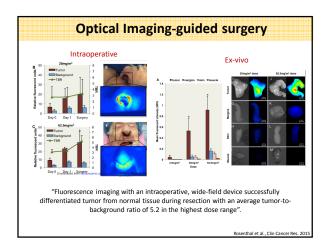
T.J. Dougherty (1974)@Roswell Photo-destruction of cells *in vitro* by fluorescein

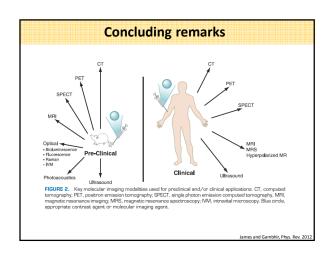

room light, they died.


While using a technique called "vital staining" to test the toxicity of an ionizing sensitizer he had made, Dougherty accidentally discovered that when cancer cells that contained the vital stain (fluorescein diacetate) were exposed to




Buffalo Physician, Autumn 2004


Administration of a drug (sensitizer) Localized activation (excitation) of the sensitizer in tissue by light of a specific wavelength Generation of highly reactive free radicals Oxidization of biological substrates causing cytotoxic effects within the illuminated tissue.





The Future of Molecular Imaging The Future of Molecular Imaging

