Research Program on the Characterizing the Premalignant Lung Cancer Signature

Mary Reid, PhD Professor of Oncology Director of Cancer Screening and Survivorship

PCGA: Premalignant Squamous Cell Lung Carcinoma Lesions Have Distinct

Histologic Progression

Jennifer Beane¹, Sarah Mazzilli¹, Ania Tassinari¹, Josh Campbell¹, Christopher Moy², Michael Schaffer², Catalina Perdomo¹, David Jenkins¹, Mary Beth Pine³, Gang Liu¹, Sherry Zhang¹, Hanqiao Liu¹, Jessica Vick¹, Evan Johnson¹, Suso Platero², Marc Lenburg¹, **Mary Reid³**, Samjot Dhillon³, Avrum Spira¹

¹Boston University School of Medicine, Boston, MA; ²Janssen Pharmaceuticals, Inc., Springhouse, PA; ³Roswell Park Cancer Institute, Buffalo, NY.

The Shift in Stage of Lung Cancer With LDCT Screening

Model Of Progression From A Bronchial Premalignant Lesion To Squamous Cell Carcinoma

Squamous Lung Carcinogenesis

Normal

Squamous metaplasia Mild dysplasia Moderate dysplasia Severe dysplasia

Carcinoma in situ

Only a subset of airway premalignant lesions progress to CIS/tumor

> Many airway premalignant lesions will regress without intervention

> > Keith, R. L. & Miller, Y.E. Nat. Rev. Clin. Oncol. 2013 van Boerdonk R.A.A., AJRCCM, 2015 Merrick D., Can. Prev. Res. 2016

Bronchoscopy and Preinvasive Bronchial Epithelial Lesions

Normal epithelium: ciliated columnar cells, basal cells, and basement membrane

columnar size and shape altered; epithelial architecture regresses, Mitotic figures,

Abnormality Under White Light in Right Main Bronchus

View of Carcinoma In-situ by Bronchoscopy

Normal Bronchoepithelium

Hyperplasia

Squamous Metaplasia

Blood Sampling: Biobanking, Paxgene

PCGA: Objectives and Study Design

- Molecular characterization of bronchial biopsies
- Identify molecular alterations associated with lesion progression

Subject Inclusion/Exclusion Criteria

High-risk subjects undergoing lung cancer screening at the Roswell Park Cancer Institute

- Group 1: Personal history of lung or upper aerodigestive cancer with no evidence of disease
- Group 2: No cancer history, age 50+, smoker with 20+ pack-years with one or more risk factors

Subject/Sample Phenotypic Information

Subject	Sample Set 1	Sample Set 2
Gender	14 (M), 15 (F)	12 (M), 8 (F)
Age	59.4 (7.6)	58.7 (8.3)
Smoking Status	28 (Ever), 1 (Never)	19 (Ever), 1 (Never)
Prior History of Lung Cancer	20 (Yes), 9 (No)	12 (Yes), 8 (No)
COPD status	21 (Yes), 8 (Unknown)	11 (Yes), 8 (Unknown), 1 (No)
Sample		
Average # Biopies/Patient	6.8 (5.8)	5.5 (2.9)
Average # Bronchoscopies/Patient	2.4 (1.5)	2.4 (0.8)
Average Time Between Bronchoscopies (Days)	450 (419)	357 (434)
Total # Biopsies	197	111
Total # Brushes	91	49
Histology of Biopsies		
Normal	41	25
Hyperplasia	30	31
Metaplasia	47	15
Mild Dysplasia	23	13
Moderate Dysplasia	37	21
Severe Dysplasia	13	6
CIS	2	0
Unknown Histology	4	0

Brief methodology overview

Gene Expression Alterations Associated with Biopsy Histological Grade

High Score

Low Score

- Severe Dysplasia/CIS
- Mild/Moderate Dysplasia
- Metaplasia
- Normal/Hyperplasia

Pathways enriched at FDR<0.01

• 294 up-regulated genes

- Glycolysis
- Cell cycle
- Wnt signaling
- E2F pathway
- P53 signaling
- PI3K cascade

Genes Associated with Premalignant Disease Progression within a Lesion Over Time

Pathways: 51 at p<0.01 42 up---regulated in stable/progressive

- Metabolic pathways
- DNA repair
- HIF1A
- IL12
- 9 down---regulated in stable/progressive
- Xenobiotics
- ARF6
- TRAF3/6-IRF
- Type 1 interferon
- JAK/STAT
- NO2-dependent IL-12 Pathway in NK cells

Discovery Of Four Molecular Subtypes of Premalignant Lesions

Subtype

1 INFγ signaling/T cell immunity (n=120)
2 OXPHOS, ETC (n=321)
3 TGFβ signaling (n=65)

4 Extracellular matrix (n=673)

5 Inflammatory Response (n=776)

6 Translation processes (n=182)

7 mRNA processing (n=701)

8 Cell cycle (n=170)

9 Cilium organization/assembly (n=1392)

Subtype discovery: consensus clustering with 80% resampling, pam clustering, and Pearson correlation across normalized median centered data

Wilkerson, M. Bioinformatics. 2010

Immune-associated module linked to lesion progression in high grade subtype

- 120 genes down-regulated in lesions with progression among high-grade subtype
- Genes are associated with INFγ signaling and T-cell mediated immunity:
 - HLA class 1 genes
 - Immunoproteosome
 - Transporters associated with antigen processing
 - Immune inhibitory signals (PDL1, LAG3, IDO1)

Conclusions

- mRNA-Seq profiling of bronchial biopsies identified four distinct molecular subtypes across genes expressed in the epithelium and the microenvironment
- The molecular subtypes are associated with histological grade, cell type, and previously defined SCC subtypes
- In the high-grade subtype, genes involved in interferon gamma signaling and T-cell mediated immunity are down-regulated with lesion progression

These results may lead to biomarkers of disease severity and progression as well as personalized therapies including immunoprevention

Future Directions

- Continue to sample patient cohort over time
- Single cell sequencing of the airways of high risk subjects
- Determining hallmarks of initiation and progression in different populations: AA versus CA, COPD, lung cancer survivors
- Use preclinical models to study the function of genes identified by the sequencing
- Use the sequencing data for other projects
 - RNA Editing with Santosh Patniak
 - Epigenetics with Joyce Ohm
- Targeting the EGFR Pathway with Cimavax

Epithelial subsets shift with smoking status

Histological Concordance Between the NTCU Mouse Model and Human Lesions Function of Differentially Expressed Genes

Sarah Mazzilli, BU

Targeting the EGFR Pathway

RPCI Collaborators

Pulmonology

Samjot Dhillon, MD Manoj Mammon, MD (UBMD) **Medicine**

Grace Dy, MD

Surgical Oncology

Saikrishna Yendamuri, MD, MS Chukumere Nwogu, MD, PhD Mark Hennon, MD

Lung Cancer Registry

Mary Beth Pine, MS

Cores

Prevention Lab, DBBR, Pathology

Translational Research

Pam Hershberger, PhD Andrew Ray, PhD (UB) Santosh Patniak, MD, PhD

Immunology

Scott Abrams, PhD

Pathology Sara Pokharel, MD, PhD

Biostatistics

Alan Hutson, PhD

Support: Stacey Scott Lung Cancer Registry

Acknowledgements

Janssen Pharmaceuticals, Inc.

Matt Lorenzi Suso Platero Christopher Moy Michael Schaffer

Boston University School of Medicine Section of Computational Biomedicine

Jennifer Beane Josh Campbell Avrum Spira Catalina Perdomo Jake Kantrowitz Yaron Gesthalter Ania Tassinari Gang Liu Sherry Zhang Hanqiao Liu Sarah Mazzilli Jake Kantrowitz Liye Zhang David Jenkins

Marc Lenburg Stefano Monti Evan Johnson Jessica Vick

LUNGevity Foundation

