Lung Cancer Clinical and Biological Considerations

Chumy Nwogu, MD, PhD
Professor of Oncology and
Surgery
Thoracic Surgery Dept

Outline

- Epidemiology
- Clinical Presentation
- Disease staging
- Screening
- Overview of Treatment
 - Targeted therapy

Histologic Types of Lung Ca

- Small Cell Ca 15%
- Non-Small Cell Ca 85%
 - Adenocarcinoma
 - Squamous Cell Ca
 - Large Cell Ca
 - Others
 - Bronchioloalveolar, Carcinoid, Adenosquamous, etc

Incidence & Mortality 2016

Estimated New Cases

			Males	Females		
Prostate	180,890	21%		Breast	246,660	29%
Lung & bronchus	117,920	14%	4	Lung & bronchus	106,470	13%
Colon & rectum	70,820	8%		Colon & rectum	63,670	8%
Urinary bladder	58,950	7%		Uterine corpus	60,050	7%
Melanoma of the skin	46,870	6%		Thyroid	49,350	6%
Non-Hodgkin lymphoma	40,170	5%		Non-Hodgkin lymphoma	32,410	4%
Kidney & renal pelvis	39,650	5%		Melanoma of the skin	29,510	3%
Oral cavity & pharynx	34,780	4%		Leukemia	26,050	3%
Leukemia	34,090	4%		Pancreas	25,400	3%
Liver & intrahepatic bile duct	28,410	3%		Kidney & renal pelvis	23,050	3%
All Sites	841,390	100%		All Sites	843,820	100%

Estimated Deaths

Lung & bronchus	85,920	27%
Prostate	26,120	8%
Colon & rectum	26,020	8%
Pancreas	21,450	7%
Liver & intrahepatic bile duct	18,280	6%
Leukemia	14,130	4%
Esophagus	12,720	4%
Urinary bladder	11,820	4%
Non-Hodgkin lymphoma	11,520	4%
Brain & other nervous system	9,440	3%
All Sites	314,290	100%

Females

emarco				
	Lung & bronchus	72,160	26%	
	Breast	40,450	14%	
X	Colon & rectum	23,170	8%	
	Pancreas	20,330	7%	
	Ovary	14,240	5%	
	Uterine corpus	10,470	4%	
	Leukemia	10,270	4%	
	Liver & intrahepatic bile duct	8,890	3%	
	Non-Hodgkin lymphoma	8,630	3%	
	Brain & other nervous system	6,610	2%	
	All Sites	281,400	100%	

Demographics - Males

Demographics - Females

• 600% rise from 1930 to 1997

Epidemiology of Lung Cancer

- Leading cause of cancer death
- Risk Factors
 - -Age
 - Tobacco
 - Occupational agents
 - Asbestos, Radon, Arsenic, Chromium, etc
 - Genetic factors

Epidemiology of Lung Cancer

- Risk Factors
 - -? Gender
 - Conflicting results
 - -Race
 - ↑ risk in African Americans & Native Hawaiians
 - -Diet
 - Fruits & vegetables intake lower the risk
 - ID of specific nutritional elements elusive
 - COPD/Pulmonary fibrosis

Impact of Age

■ Table 19–5. INCIDENCE OF MALIGNANCY IN SOLITARY PULMONARY NODULES RELATED TO AGE

Age (yr)	Malignant (%)	
35–44	15	
45-49	26	
50-59	41	
60–69	50	
70-79	70	

Smoking and Lung CA

Incidence (per 100,000)

Smoking kills 512,000 people a year, from many different diseases

*includes 138,000 (89%) of the 155,521 lung cancer deaths

About one in three of all cancer deaths is due to smoking

• 70,000 (26%) • 267,000 from smoking • female

Smoking causes about three times as many deaths as all non-medical causes put together

Low Smoking Exposure

- Mutations TK domain of EGFR
- Adenocarcinomas
- Well Differentiated
- Women > Men
- Non-smokers

Evaluation

- Clinical
- Laboratory
- Radiographic
- Physiologic
- Diagnostic

Clinical Manifestations

- Factors which Affect Symptoms
 - -Location
 - Extension
 - -Mets
 - Hormonal syndromes

Symptoms-Pulmonary

- Pulmonary
 - Cough
 - Hemoptysis
 - Dyspnea
 - -Fever
 - Chest pain

Symptoms-Extrapulmonary

- Extra Pulmonary
 - Pleural effusion dyspnea
 - Recurrent Nerve Hoarseness
 - -SVC Syndrome
 - Dysphagia

Symptoms-Extrathoracic

- Extra Thoracic
 - Hypertrophic pulmonary osteoarthropathy
 - Cervical Lymph Node Mets
 - Bone Pain
 - CNS Symptoms

Symptoms-General

- Non-specific
 - Weight loss
 - Weakness
- Hormonal
 - Cushing's Small Cell
 - -SIADH Adeno or poorly diff
 - -Parathormone, Hypercalcemia SCCA

Symptoms-General

- Asymptomatic 5 to 15%
- Others
 - Neuromyopathies (Eaton-Lambert)
 - Dermatoses
 - Vascular
 - Hematologic

Physical Findings

- Will depend on extent of disease
- Cachexia
- Lymphadenopathy
- Clubbing
- Pulmonary findings
- Manifestations of metastases

Laboratory

- Non-specific findings
- Anemia
- Hypercalcemia
- Elevated CEA level
- Abnormal LFTs
- Elevated ALP

Imaging

- CXR (OLD FILMS!)
- CT Scan
- MRI
- Bone Scan
- PET Scan

CT Scan

В

Copyright © 2005 by Elsevier Inc.

PET Scan Imaging

- 97% Sensitive
- 78% Specific
- > 1 cm

Disease Staging

TNM Staging – 7th edition

T/M	Subgroup	N0	N1	N2	N3
T1	T1a	Ia	IIa	IIIa	ШЬ
2	Т1Ь	Ia	IIa	IIIa	Шь
T2	T2a	Ib	Ha	IIIa	ШЬ
	T2b	IIa	IIb	IIIa	ШЬ
Т3	T3 >7	IIb	IIIa	IIIa	ШЬ
3	T3 Inv	IIb	IIIa	IIIa	ШЬ
	T3 Satell	IIb	IIIa	IIIa	ШЬ
T4	T4 Inv	IIIa	IIIa	IIIb	ШЬ
	T4 Ipsi Nod	IIIa	IIIa	IIIb	ШЬ
M1	M1a Contra Nod	IV	IV	IV	IV
	M1a Pl Disem	IV	IV	IV	IV
	M1b	IV	IV	IV	IV

T Status

- •TX Primary tumor cannot be assessed, eg sputum positive
- T0 No evidence of primary tumour
- •Tis Carcinoma in situ

T Status

N Status

No N1

No regional lymph node metastases

Metastasis in ipsilateral intrapulmonary/ peribronchial/hilar lymph node(s), including nodal involvement by direct extension

Nodal Status

NX- Can't Assess

No- No regional nodes

N1- Peribronchial

N2- Ipsilateral mediastinal

N3- Contralateral mediastinal

N₂

Metastasis in ipsilateral mediastinal and/or subcarinal lymph node(s), including "skip" metastasis without N1 involvement Metastasis in ipsilateral mediastinal and/or subcarinal lymph node(s) associated with N1 disease

Nodal Status

NX- Can't Assess

No- No regional nodes

N1- Peribronchial

N2- Ipsilateral mediastinal

N3- Contralateral mediastinal

Metastasis in contralateral hilar/ mediastinal/scalene/ supraclavicular lymph node(s) Metastasis in ipsilateral scalene/ supraclavicular lymph node(s)

Nodal Status

NX- Can't Assess

No- No regional nodes

N1- Peribronchial

N2- **Ipsilateral mediastinal**

N3- Contralateral

mediastinal

M Status

- •M0 No distant metastasis
- •M1 Distant metastasis
 - •M1a Separate tumour nodule(s) in a contralateral lobe; tumour with pleural nodules or malignant pleural or pericardial effusions
 - •M1b Distant metastasis

M1a

Lung Staging

Lung Staging - Mets

•	Lymph Nodes	96%
•	Bones	48%
•	Adrenals	40%
•	Liver	41%
•	Kidneys	19%
•	Heart	15%
•	Opposite lung	13%

Survival by Stages Pathologic

Tumor Growth I Stepwise Model

Tumor Growth II Stepwise model

Alternate
Disease
Progression

Stage at Presentation

Purpose of Lung Cancer Screening

- Detect
 asymptomatic,
 early stage disease
 that is amenable to
 curative therapy
- Improved outcomes
 - Survival
 - Quality of Life

The Shift in Stage of Lung Cancer with LDCT Screening

Schema

• Radiology: Volume 258: Number 1—January 2011

Summary of Screening Criteria Presented by Professional Organizations

Organization	Screening Criteria
NCCN	 NLST Criteria (55-74 years, 30 Packyear (PY)) ≥ 50, 20 PY with additional risk factor (Cancer History, COPD, FH, work exposure, pulmonary fibrosis)
ACS	 NLST Criteria with Expertise in LDCT Multidisciplinary Team Vigorous Smoking Cessation
ALA	 NLST Criteria with Expertise in LDCT Encourage Smoking Cessation No Chest X-ray Multidisciplinary Team
ACCP/ASCO	 NLST Criteria Smoking Cessation ≥ 15 Years Ago Multidisciplinary Team

Summary of Screening Criteria Presented by Professional Organizations

Organization	Screening Criteria
AATS	 NLST Criteria (55-79 years, 30 PY) ≥ 50, 20 PY with additional risk factor (Moderate COPD, Cancer History, FH, work exposures No suggested limits on numbers of LDCTs Lifelong surveillance for aerodigestive cancer survivors
AAFP (January 2014)	 Insufficient evidence to recommend for or against screening for lung cancer Potential for screening from ages 55-80 Physicians must engage in shared decision making regarding the benefits, potential harms, and costs from screening

Recommendations for Lung Cancer Screening Programs

- Experienced management of nodule surveillance
- Multidisciplinary team
- Referral centers with experienced radiologists and pulmonologists
- Must be integrated with comprehensive smoking cessation program

Lung Cancer Multidisciplinary Team

- Medical Oncology
- Pulmonology
- Prevention
- Radiation Oncology
- Nuclear Medicine

- Thoracic Surgery
- Diagnostic Radiology
- Pulmonary Pathology

Obtaining Tissue for Diagnosis

- CT guided needle biopsy
- Endobronchial biopsy
- Endobronchial Ultrasound
- Navigational bronchoscopy
- Thoracocopic biopsy

Treatment Modalities

- Surgery
- Radiotherapy
- Chemotherapy
- Targeted Therapy
- Endobronchial Interventions
- Palliative Procedures

Surgical Management

- Approach
- Video Assisted Thoracic Surgery (VATS)
- Thoracotomy
 - Posterolateral
 - -Anterior
- Median Sternotomy

Surgical Management

- Lobectomy (+ lymphadenectomy)
- Larger resections
 - Bilobectomy, Pneumonectomy
- Lesser resections
 - Segmentectomy, wedge resection

Minimally Invasive Lobectomy

Robot-Assisted Lobectomy

The da Vinci SI Surgical Robot (bedside cart)

The da Vinci Robot

Features

- EndoWrist
 Instruments provide enhanced dexterity, precision and control:
 - 7 degrees of freedom
 - 90 degrees of articulation
 - Intuitive motion and finger-tip control
 - Motion scaling and tremor reduction

Surgical Contraindications

- Inadequate cardiopulmonary reserve
- Malignant pleural effusion
- Recurrent laryngeal nerve paralysis
- Small cell carcinoma
- Contralateral lymph node mets
- Distant mets

Non-Surgical Therapies

- Chemotherapy
- Radiotherapy
- Combination therapy
 - Neoadjuvant (prior to surgery)
 - Palliative
 - Definitive
 - Adjuvant (after surgery)

Chemotherapy

- Traditional chemotherapeutic agents are systemic cytotoxic drugs
- Platin-based therapy
 - Cisplatin
 - Carboplatin
- Typically a doublet
 - Combination of 2 chemotherapeutic agents

Targeted Therapy

- Markedly improved understanding of molecular pathways in NSCLC
- Identification of "Driver Mutations"
- Design of small molecules to interfere with the products of these mutated genes
- Often more effective & less toxic than traditional chemotherapy

Molecular targets in non-small cell lung cancer

Pathways for molecularly targeted therapy in non-small cell lung cancer. Original, courtesy of Dr. Joel Neal.

UpToDate®

Background

- The EGFR family
 - EGFR (ErbB1, HER1)
 - ErbB2 (HER2, neu)
 - ErbB3 (HER3)
 - ErbB4 (HER4)
- Binding of soluble extracellular ligand →
 dimerization → intracellular TK domain activation/
 phosphorylation → downstream signaling →
 promotion of cell proliferation, motility and
 invasion
- EGFR mutated in ~10% of NSCLC in the US and 35% in East Asia (overall 26%)
- Confers poor prognosis

Receptor Tyrosine Kinases (RTKs) Activation

EGRF Signaling

Growth factor binding to EGFR results in activation of the **MAPK signaling** pathway (RAS-**RAF-MEK-ERK)** and the PI3K pathway (PI3K-AKT-mTOR).

EGFR Mutations

Mutations above the schematic are associated with sensitivity to EGFR TKIS **Mutations** listed below the schematic are associated with **EGFR TKI** resistance

EGFR Mutations

- More often occur in adenocarcinomas in female never-smokers
- Typically, non-overlapping with other oncogenic mutations found in NSCLC (i.e. KRAS mutations, ALK rearrangements, etc.)
- Both prognostic and predictive
- Identifies the subset of patients responsive to TKIs

Pharmacologic targeting of the EGFR signaling pathway

- Two basic approaches
 - Anti-EGFR monoclonal antibodies (mAbs)
 - -Small molecule Tyrosine Kinase Inhibitors (TKIs)
- Limited efficacy in unselected NSCLC

Anti-EGFR mAbs

- Bind to the extracellular domain of EGFR
- Competitive occlusion of the ligand binding region
- Inhibit ligand-induced phosphorylation of the catalytic region
- Blocks the intracellular signaling cascade
- Cetuximab (Erbitux®) & Panitumumab (Vectibix®)
 - Effective in combination with chemotherapy
 - No validated predictive biomarker

Small molecule TKIs

- Response is predictable based on activating EGFR somatic mutations
- Gefinitib (Iressa[®]) and Erlotinib (Tarceva[®])
 - Reversible inhibitors of the EGFR kinase
 - Bind to the ATP-binding site thus preventing phosphorylation and downstream signaling
 - Superior to chemotherapy in pts with tumors that bear activating EGFR mutations
 - EGFR amplification (detected by FISH in 20-40% of NSCLCs) adds to the response rates

Small molecule TKIs

- A small proportion of pts show a radiographic response with no detectable EGFR mutation
 - Need for new biomarkers

NSCLC Patients selection for EGFR TKIs

- 2 types
 - Primary or *de novo* resistance
 - Secondary or acquired
- Both types related to EGFR mutations
 - mainly affecting exon
 20 Small insertions
 or duplication;
 T790M mutation

- Newer irreversible EGFR inhibitors (pan-Erb inhibitors) may overcome T790Mmediated resistance
- Other genomic alterations can coexist with EGFR mutations
 - Mutations of PIK3CA
 - Loss of function of the inhibitor PTEN
 - Altered IGFR signaling

- In EGFR wild type tumors, downstream genetic lesions may cause TKI resistance
 - KRAS mutations; 17% of NSCLC
 - -BRAF mutations; rare (2%)
 - PIK3CA mutations (3%)
 - Loss of PTEN expression
 - Activating mutations of the AKT gene
 - Amplified MET mediates PIK3CA activation via ErbB3 activation

- T790M mutation and MET amplification account for 70% of acquired resistance to EGFR inhibitors in NSCLC
- Strong rationale for combination anti-EGFR /anti-MET approach
- EML4-AKT fusion protein
 - Product of gene translocation
 - Induces constitutive dimerization & activation of the ALK kinase domain

Conclusion

- NSCLC is extremely heterogenous
 - As an entity
 - Even within an individual patient
- Targeted therapy results are mixed and not fully understood
- Current biomarkers seem inadequate
- Modest improvements in survival have been achieved
- The holy grail of markedly effective, personalized NSCLC therapy is still elusive

Radiotherapy

- Therapy using ionizing radiation to control or kill malignant cells
 - -3D Conformal RT
 - Intensity-modulated radiation therapy (IMRT)
 - -SBRT

SBRT Stereotactic Body Radiation Therapy

Endobronchial Therapy

- Interventions within the airway via flexible or rigid bronchoscopy
- Used for very early (non-invasive) or obstructive disease
 - Laser fulguration
 - Photodynamic therapy
 - Cryotherapy
 - -Stent insertions

PleurX Catheter

PleurX Catheter

Management of Advanced Lung Cancer

- Platin-based combination chemotherapy
- Conformal 3-D radiotherapy
- Molecularly targeted therapy
- Airway obstruction relief – Lasers, PDT, stents

- Management of Pleural Effusions
- Pain Control & other aspects of Palliative care – dyspnea, psychosocial problems, etc

Long-term Care

- Surveillance
- Survivorship Fertility, Cognitive challenges, other disabilities
- End of Life Planning Proxy,
 Hospice (home or institutional),
 Intubation or not, DNR (Do Not
 Resuscitate), etc

