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Questions/Qutline

* Whatis Genomic instability 2
+  What factors contribute to genome integrity2
+ How we identify these aberrations?

A renewed model of pancreatic cancer evolution
based on genomic rearrangement patterns

«  Noftta, et al, Nature October 12, 2016
* doi:10.1038/nature19823
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Genomic instability

» Cells maintain genome integrity and promote
faithful genome propagation by:

o Coordinated DNA replication
o DNA-damage sensing and repair

o Cell-cycle checkpoints

10/18/16

e3

Most checkpoints evolutionarily conserved and are tumor suppressors
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Genomic instability

» Drives evolution at the molecular level and
generates genetic variation/diversity
» Specialized role in generation of variability in

developmentally regulated processes
o Immunoglobulin diversification

» Associated with pathological disorders

o Premature aging
o Inherited disease
o Cancer

©® Genomic Instability RPN-530 Oncology for Scientist-I o5

Cancer

» Evolution at a vastly accelerated rate with natural
selection favoring the growing tumor mass over the

organism.
« Successive gene mutations activating oncogenes
and inactivating fumor suppressors.
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A
Component Acquired Capability Example of Mechanism

Self-sufficiency in growth signals Activate H-Ras oncogene

Insensitivity to anti-growth signals  Lose retinoblastoma suppressor

Evading apoptosis Produce IGF survival factors
Limitless replicative potential Turn on telomerase
Sustained angiogenesis Produce VEGF inducer
Tissue invasion & metastasis Inactivate E-cadherin
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Early Molecular Model of Tumor Progression
- Vogelstein

» Hypothesis: Mutation in one gene associated with
each step in progression.

DNA
hypomethylation

activation loss of

- 189 T
loss of APC ofisas £a 18

normal 1 hyperplastic early +intermediate »late l invasion &
epithelium epithelium adenomas metastasis

Figure 11.11 The Biology of Cancer (© Garland Science 2014)

loss of p53

Fearon & Vogelstein, Cell 61, 759-767 ( 1990).
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Early Molecular Model of Tumor
Progression- Vogelstein

* Problem 1: Vogelstein pathway is no more than a
rough outline...

\
oy
¥ & Hypermurable phenotype RERG daiscas
3 \\ TGFRIL, Bax, MMR genes,
&
Mg A
K

Tef4, IGF2R, E2F4 frameshifts

p1s
pi6

Bubl
Cyelin D1

K-Ras nec ps3 7
Early Intermediate = Late F %
Adenoma I Adenoma S | Adenoma fancer b

pathway
(Chromosomal

Sminld 2q

High grade

dysplasia dysphasia

UCACRC E-<adherin
CD44

Metasatic
poiyp

Early MHAP/

9
[E——
Sercated adenoma

Late Spocadic
adenoma cancer

?
; 7 peogression

® Genomic Instability RPN-530 Oncology for Scientist-| 9

Early Molecular Model of Tumor
Progression

* Problem 2: How do you accumulate all of these
mutations in one cell?

mwistion p53 & krap CIN SLOH2159,17p 8 18q
mutation in MSI
“:::‘m::" Wﬂy tation |
mul o
Normal —L Adenoma target genes Cancer
Y
CIMP+/MSI+
hMLH1
momyluloy‘
methytation in p16, C|MP
PTEN, TIMP3 etc ~eif)
CIMP+/MS|- ==

Molecular pathogenesis of colorectal cancer Cancer pages 2035-2047, 4 OCT 2005 DOI: 10.1002/cncr.21462
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Emerging Hallmarks

Deregulating cellular Avoiding immune
energetics destruction

Genome instability = Tumor-promoting
and mutation Inflammation

Enabling Characteristics

Cell

Hanahan and Weinberg, 2011 PRESS

(] o]
Genomic Instability RPN-530 Oncology for Scientist-I

Cancer is a genetic disease

Genetic selection at the level of single cells.
Aneuploidy is a hallmark of cancer cells.

Somatic mutations occur in most cancers.
Inherited germline mutations occur in rare familial
cancer syndromes.

Increases in mutation rate or genomic instability
increase frequency of cancer.

©® Genomic Instability RPN-530 Oncology for Scientist-I ®12
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Genomic Instability in cancer

Genomic instability is a fundamentally important
feature of (all) cancer cells.

o Chromosomal instability } CIN
o Infrachromosomal instability

o Microsatellite instability > MSI

o Epigenetic instability

(Is instability a cause or consequence of cancer?)

©® Genomic Instability RPN-530 Oncology for Scientist-I ®13

Genomic Instability in cancer

1990: Tisty. Tumor cells growing in culture are genomically
unstable; elevated gene amplification rates. Genomic instability
is c;’continuous process since it was inherited by daughter tumor
cells.

1991: Loeb. Normal rate of mutation (1.4 x 10-10 nucleotides/ cell
division) was insufficient to produce the estimated necessary
mutations to achieve cancer. Need for Mutator Phenotype.

1992: Kallioniemi and Pinkel. Comparative genomic hybridization
showed amplifications and deletions in cancer, more than
existing dogma.

1993: Fishel and Kolodner. Hereditary nonpolyposis colorectal
g:otncbe.lr.torises from defects in DNA mismatch repair. Microsatellite
instability.

©® Genomic Instability RPN-530 Oncology for Scientist-I ®14



Familial Cancer Syndromes

Hereditary Nonpolyposis Colorectal Cancer —

o Mismatch Repair Genes

Familial Breast/Ovarian Cancer
o BRCA1/2

Ataxia Telangiectasia
o ATM

Li- Fraumeni Syndrome
o p53

Werner's and Bloom's Syndromes

o DNA Helicases

Mutator Hypothesis

©® Genomic Instability RPN-530 Oncology for Scientist-I

Forms of instability

Chromosomal Instability (CIN)
o Microscopic changes in the Karyotype
« Chromosomal gain or loss (Aneuploidy)
« Chromosomal franslocation

o Failures in either mitotic chromosome transmission or the spindle mitotic
checkpoint

o Can be studied by Cytogenetics techniques
Microsatellite Instability (MSI or MIN)

o Repetitive DNA expansions and contractions.
+ Replication slippage
* Mismatch repair (MMR) impairment
* Homologous recombination
o Require molecular techniques(i.e. PCR) to identify them

Mutations, small deletions, insertions, inversions, etfc.
o Identify by sequencing

Epigenetic instability
o ldentify by ChIP-seq, WGBS, etc

©® Genomic Instability RPN-530 Oncology for Scientist-I
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Questions/Qutline

* Whatis Genomic instability 2
*  What factors contribute to genome integrity?
« How we identify these aberrations?

A renewed model of pancreatic cancer evolution
based on genomic rearrangement patterns

* Noftta, et al, Nature October 12, 2016
* doi:10.1038/nature19823
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Chromosomal Instability




Genomic Instability

Genomic Instability

Figure 12.39 The Biology of Cancer (© Garland Science 2014)

Table 12.3 Mutated, methylated, and overexpressed genes in cancer cells that perturb
chromosomal stability

RPN-530 Oncology for Scientist-I

Gene Function of gene product Consequence of altera
cancer cells

BUBR1/ spindle assembly checkpoint progress through mitosis, even

BUBT? in the presence of microtubule
inhibitors?

MADT® spindle assembly checkpoint large-scale aneuploidy

MAD2bC spindle assembly checkpoint premature entrance into
anaphase,d aneuploidy

Securin attachment of sister cl tion of cl

cohesin attachment of sister chromatids  aneuploidy

complex

A A -B of d ids at pi into

anaphase anaphased

CHFR® spindle assembly checkpoint nondisjunctionf, chromosome loss

14-3-36 DNA damage checkpoint segregation of unrepaired
chromosomes

RB cell-cycle regulator aneuploidy

APCI regulation of proliferation mitotic defects, cytokinesis failure

2Humans with heritable compromised BubR1 function suffer the cancer predisposition syndrome
termed mosaic variegated aneuploidy. Mice with inherited Bub1 and BubR1 insufficiency are also
cancer prone under certain conditions.

bMad1 and Mad2 form complexes at the kinetochore that prevent chromatid separation until
complexes with spindle fibers have been properly formed. Mad 1+~ mouse heterogyzotes develop a
variety of tumors.

“The Mad?2 gene is transcriptionally repressed in a number of solid tumors and is frequently mutated
in gastric carcinomas. Mice that are heterozygous at the Mad?2 locus (i.e., are Mad2*") develop
lung cancers as adults, while those that overexpress wild-type Mad2 protein develop a variety of
malignandies.

dpremature entrance into anaphase can lead to loss of entire chromosomes.

Chfr*~ mice develop lymphomas early in life and carcinomas of the liver, lung, and gastrointestinal
tract later in life.

Nondisjunction is the failure of sister chromatids to separate at anaphase.

9Anaphase-promoting complex.

Table 12.3 The Biology of Cancer (© Garland Science 2014)
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Microsatellite instability

Replication slippage
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Figure 12.37 The Biology of Cancer (© Garland Science 2014)
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Telomere attrition contribute to genomic
instability

DNA replication
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Oncogenes and local replication/
Amplifications
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Oncogene activation causes replicative stress and
genomic instability.

Oncogene activation

. re-usage
NN

- | OO | — EEnter mitosis with under-
Fork stalling/collaps)e/ replicated DNA

Sossfornons
DNA DSBs

Genomic instability Current Biology

rrent Biology 2014 24, R435-R444DOI: (10.1016/j.cub.2014.04.012)
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DNA damage checkpoint
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Replication stress induced DNA damage
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Causes and consequences of replication stress Michelle K. Zeman & Karlene A.

Cimprich Nature Cell Biology 16, 2-9 (2014) doi:10.1038/ncb2897
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Chromothripsis

Catastrophic chromosomal
breakage

DO I
[ | e | DNA fragments

Progression towards cancer

= |
I N g =
Attempted chromosomal
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‘Chromothripsis’ .
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» =
—
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B PD3646a (pancreatic) C PD3646a spectral karyotype 1

i ////

Chr14

Massive Genomic Rearrangement Acquired in a Single Catastrophic Event
during Cancer Development, Stephens et al, Cell 2011
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Chromothripsis
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Figure 12.35 The Biology of Cancer (© Garland Science 2014)
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Questions/Qutline

* Whatis Genomic instability?

+  What factors contribute to genome integrity2

« How we identify these aberrations?

A renewed model of pancreatic cancer evolution
based on genomic rearrangement patterns

« Noftta, et al, Nature October 12, 2016
* doi:10.1038/nature19823
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Part lll: Measurements of Genomic

Instabilities

* Inter-Sample Sequence, Repeat PCR
« Allelotyping (SNP arrays) Size of
« Comparative Genomic Hybridization DNA

o BAC-Array damage
» Spectral Karyotyping detected
* Karyotyping increases.
® Genomic Instability RPN-530 Oncology for Scientist-I ®33

Cytogenetic - Karyotyping
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Spectral Karyotyping (SKY)
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Photo: Autism Spectrum Disorder in a Girl with a De
Novo X;19 Balanced Translocation. Hindawi 2012

Changes produce genomic and
karyotypic instability and often show
gross rearrangements
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Fluorescent In Situ Hybridization(FISH)

fluorophore

PNA Probe

Photo: Swiss perinatal institute
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Utilizaj:ion of CGH in cancer

High frequency of PTEN, PI3K, and AKT abnormalities in T-cell
acute lymphoblastic leukemia. Blood. 2009 29
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Next-generation sequencing(NGS)

» Best way to analyze genomic instability is to
sequence the cancer genome.

+ Exome sequencing has been used to analyzed
Lung, glioblastoma and many other cancers.

» The data is publicly available through TCGA and
other sequencing consortium.

« Whole genome sequencing is expensive, but
provides more details about cancer genome(e.g.
Noncoding and promoter sequence).

©® Genomic Instability RPN-530 Oncology for Scientist-| 0 4]

Characterizing MSI
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Changes that produce genomic and
karyotypic instability
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Quantifying Genomic Alterations by Direct
DNA Sequencing - 2006

« Sequenced 13,023 genes in each of 11 breast

carcinomas and in each of 11 ecolon carcinomas.
o 189 genes had above average mutation frequencies.
o The average tumor had 93 genes mutated.
o This set varied from tumor to tumor.
o In addition to point mutations, many “indels” of 1-100 bases.

» Sjoblom et al, Science 314:268-274, 2006.
» Kaiser, Science 313:1370, 2006

©® Genomic Instability RPN-530 Oncology for Scientist-| ® 44
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Quantifying Genomic Alterations by Direct
DNA Sequencing

» This pattern of diversity applies to most solid tumors
o ¢ Breast, « Gastric, » Lung ¢ Ovarian ¢ Renal « Colorectal
o ¢ Head and Neck * Mesothelioma ¢ Pancreatic
o Nature 446: 153, 2007
o PNAS 105:3521, 2008

» Driver Mutations
o confer growth advantages on the cancer cell -> positive selection

» Passenger Mutations
o don't confer growth advantages -> no positive selection

« ‘“drivers appear to be distributed across a large number

of genes, each of which is mutated infrequently”
o Stratton et al. Nature 458:719, 2009.

©® Genomic Instability RPN-530 Oncology for Scientist-| 045

When does genomic instability
occurduring fumor progression?

« Early -> driver of progression

» Late ->result of progression

©® Genomic Instability RPN-530 Oncology for Scientist-| 046

23



10/18/16

Questions/Qutline

* Whatis Genomic instability?
+  What factors contribute to genome integrity2
+ How we identify these aberrations?

A renewed model of pancreatic cancer evolution
based on genomic rearrangement patterns

* Noftta, et al, Nature October 12, 2016
* doi:10.1038/nature19823

©® Genomic Instability RPN-530 Oncology for Scientist-I 047

A renewed model of pancreatic cancer
evolution based on genomic rearrangement
patterns

Notta, et al., Nature October 12, 2016

High genomic instability in PancCa
Sequence 100 whole genomes
Purified primary and metastatic pancreatic ductal Ca

©® Genomic Instability RPN-530 Oncology for Scientist-| ®48
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A renewed model of pancreatic cancer evolution
based on genomic rearrangement patterns

a Diploid
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80
» Polyploidization in
pancreatic cancer

o 45% of tumors
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A renewed model of pancreatic cancer evolution
based on genomic rearrangement patterns

« Mutations occur prior to
polyploidy

_ b Signature subtype: c
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A renewed model of pancreatic cancer evolution

based on genomic rearrangement patterns

* More copy number
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A renewed model of pancreatic cancer evolution

based on genomic rearrangement patterns

* Most copy number changes from single chromothripsis event

o

CN alterations
from chromothripsis
(% of total)

Tumour samples with chromothripsis —-yp

® Genomic Instability
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B event 5

RPN-530 Oncology for Scientist-|

52

10/18/16

26



10/18/16

A renewed model of pancreatic cancer evolution
based on genomic rearrangement patterns

Chromothripsis and polyploidization in a patient with metastatic progression
a
Timeline: Pcsi_0410

{ Sept 2012 Jan 2013 | Aor 2013 S Jun 2013 | Jan 2014

Diagnosis - primary  Follow-up
tumour removed CTs > RAP

Metastases - -

Diagnosis 1 year later
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A renewed model of pancreatic cancer evolution
based on genomic rearrangement patterns

» All mets polyploid and have myc amplification

c
ag - Adrenal gland lu(1)
di - Diaphram
hr - Heart
Iv - Liver
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Structural variants (%)
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A renewed model of pancreatic cancer evolution
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based on genomic rearrangement patterns

Examine 96 single cells from one patient
Single event knocked out CDKN2A and SMAD4
16% of all PancCa, all 4 drivers altered simultaneously

Ashpc_0008

[fnfen
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A renewed model of pancreatic cancer evolution
based on genomic rearrangement patterns

Sequential hit model “a la Vogelstein”

KRAS —p» CDKN2A —» TP53 — SMAD4
3 cg::
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A renewed model of pancreatic cancer evolution
based on genomic rearrangement patterns

» Back to problem 1: Vogelstein pathway is no more than
a rough outline...

invasive

——— pancreatic intraepithelial neoplasia (PanIN) ———

. carcinoma
B-catenin Ras-Raf-PI3K  TGF-p P53 telomere shortening
K-ras activation — (>90%)
p16/NK4A inactivation — (95%) ——>
p53 inactivation — (75%) —
Smad4 inactivation — (55%) —»
Figure 11.12 The Biology of Cancer (© Garland Science 2014)
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Early Molecular Model of Tumor Progression

* Problem 2: How do you accumulate all of these

mutations in one cell?

initiating mutation
0000006000000000000000

FIRST CLONAL EXPANSION
second mutation

eYeYeore Ty XY Ye e pmmnnes 6600000

~106 cells

SECOND CLONAL EXPANSION
third mutation

00666666686 6606600

~106 cells

THIRD CLONAL EXPANSION
fourth mutation

GOS66665666 $8666660
; ~106 cells |
|FOURTH CLONAL EXPANSION
etc.
Fiure 115 TheBlog of e (€ Gartand e 2014)
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A renewed model of pancreatic cancer evolution
based on genomic rearrangement patterns

» Complex genomic rearrangement of cancer driver genes
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A renewed model of pancreatic cancer evolution
based on genomic rearrangement patterns

» 3 copy number drops are evidence of BFB

Copy number

G bd
DSB initiates - el
progess . —> 1stBFB —> 2ndBFB  —> 3rd BFB —>Chromothripsis —> 4 Jicte

nome
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» Simultaneous knockout of pancreatic cancer driver genes
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Which model of tumor progression does the data support?
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« Noftta, et al, Nature October 12, 2016
* doi:10.1038/nature19823
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