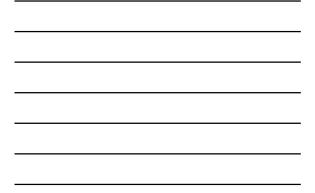
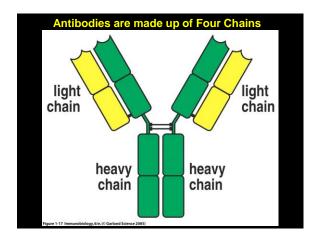
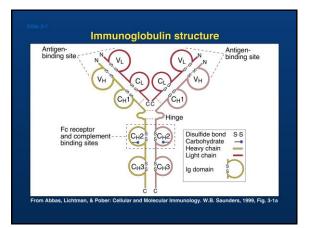
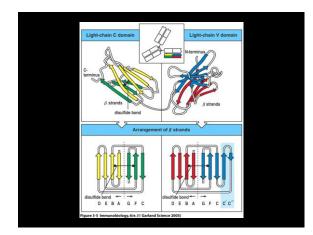
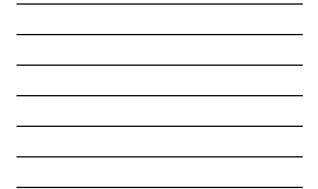

Antibody Structure and Function

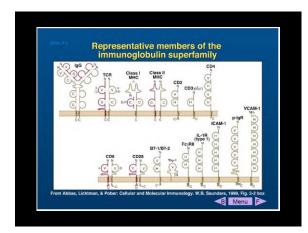

Amit Lugade PhD Amit.Lugade@RoswellPark.org Center for Immunotherapy

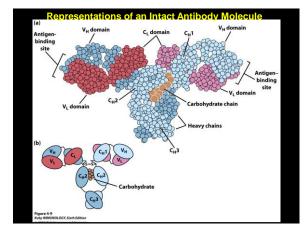


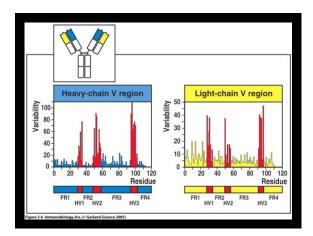


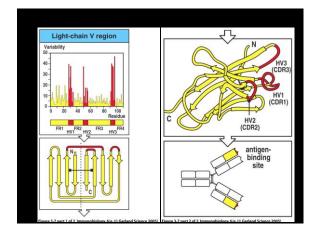


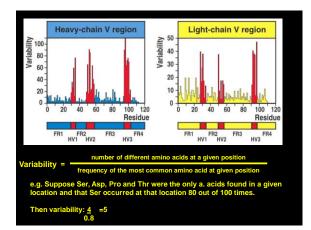


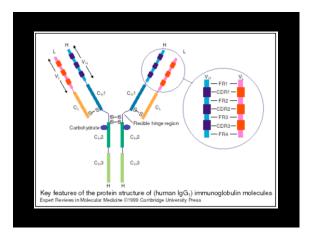


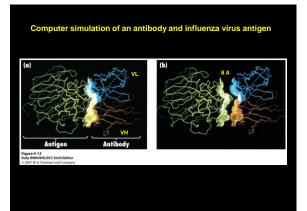


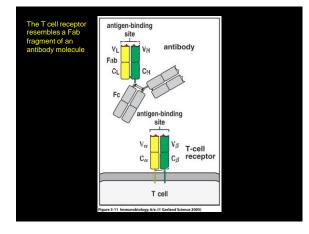


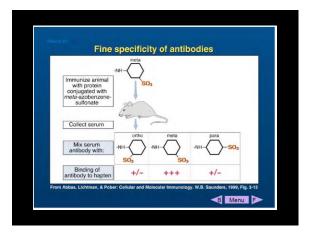


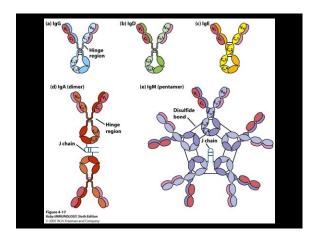


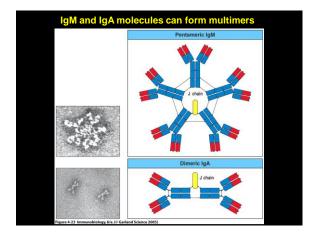




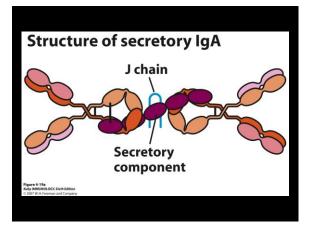


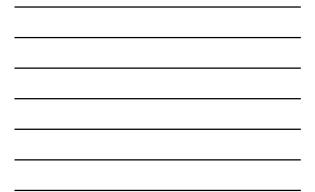


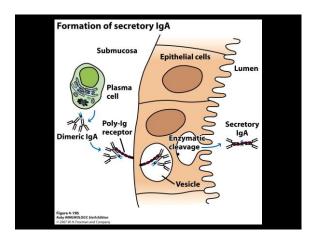


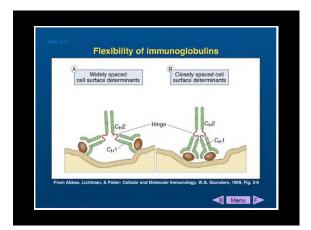

TABLE 5-I	Chromosomal locations of immunoglobulin genes in human and mouse				
	CHROM	IOSOME			
Gene	Human	Mouse			
λ Light chain	22	16			
к Light chain	2	6			
Heavy chain	14	12			

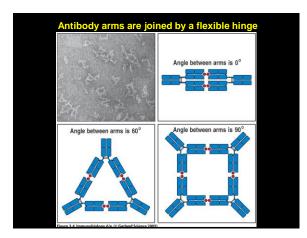
MAN	
Ig Classes (Isotypes)	Subclasses
IgG γ IgM μ	G1 G2 G3 G4
IgE ε IgA α IgD δ	A1 A2
MOUSE	
IgG IgM IgA IGE IgD	G1 G2a G2b G3



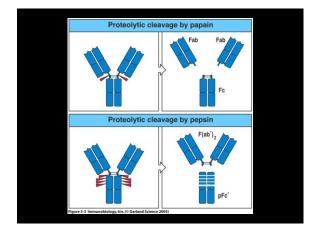

In man the k: λ ratio is 2:1				
In mice:	20:1			
In cattle:	1:20			



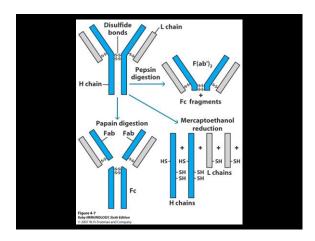




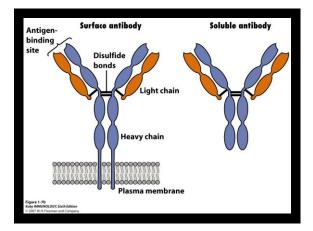


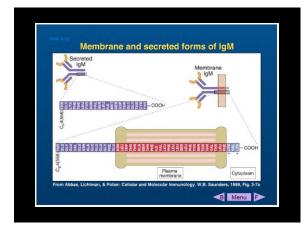


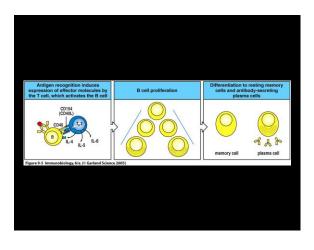


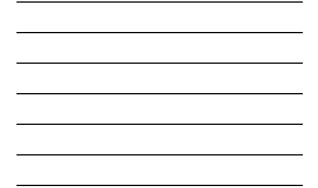


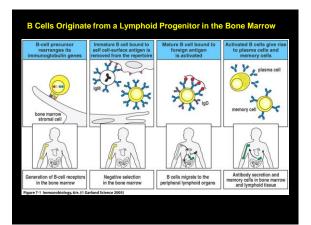
	Immunoglobulin								
	lgG1	lgG2	lgG3	lgG4	lgM	lgA1	lgA2	IgD	lgE
Heavy chain	γ ₁	γ ₂	γ ₃	γ ₄	μ	α1	α2	ð	e
Molecular weight (kDa)	146	146	165	146	970	160	160	184	188
Serum level (mean adult mg ml ⁻¹)	9	3	1	0.5	1.5	3.0	0.5	0.03	5 x 10 ⁻⁵
Half-life in serum (days)	21	20	7	21	10	6	6	3	2
Classical pathway of complement activation	++	+	+++	-	+++	-	-	-	-
Alternative pathway of complement activation	-	-	-	-	-	+	-	-	-
Placental transfer	+++	+	++	-+	-	-	-	-	-
Binding to macrophage and phagocyte Fc receptors	+	-	+	-+	-	+	+		+
High-affinity binding to mast cells and basophils	-		-	-	-	-	-	-	++++
Reactivity with staphylococcal Protein A	+	+	-+	+	-	-	-	-	-
Figure 4-17 Immunobiology, 6/e. (©	Garland	Science	2005)	-		-	-		

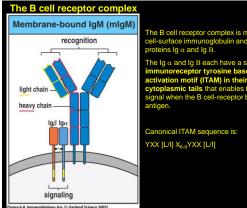


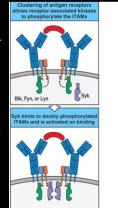




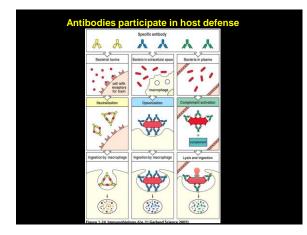




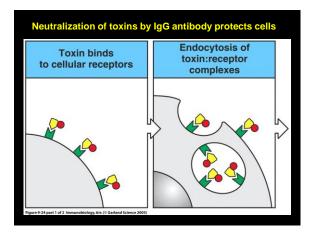


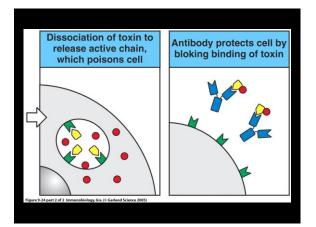

The B cell receptor complex is made up of cell-surface immunoglobulin and invariant proteins Ig α and Ig B.

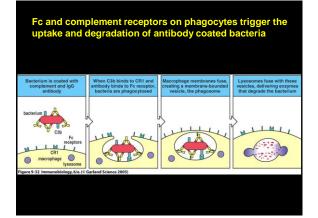
preceptor tyrosine based on motif (ITAM) in their smic tails that enables the the B cell-receptor bind


Canonical ITAM sequence is: YXX [L/I] X₆₋₉YXX [L/I]

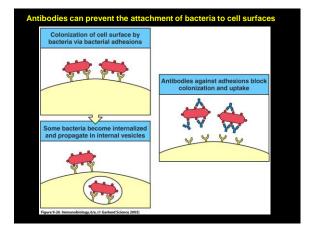
Clustering of antigen receptors and phosphorylation of ITAMs by receptor associated Src-family tyrosine kinases Blk,Fyn or Lyn.


Once ITAMs are phosphorylated they attract the protein tyrosine kinase Syk. Until Syk is bound to the phosphorylated ITAMs it is enzymatically inactive. To become active it itself must become phosphorylated—thought to occur by transphosphorylation mediated by Syk itself or Src kinases.

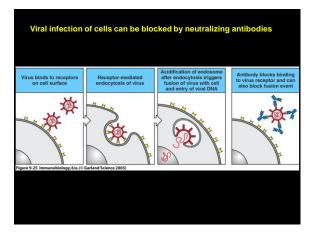

Role of cytokines in regulating lo	Role of cytokines in regulating Ig isotype expression						
Cytokines IgM IgG3 IgG1 IgG2b	lgG2a lg	E IgA					
IL-4 Inhibits Inhibits Induces	Inhibits	uces					
		Augments production					
IFN-y Inhibits Induces Inhibits	Induces	ibits					
TGF-β Inhibits Inhibits Induces		Induces					
Figure 9-7 Immunobiology, 6/e. (© Garland Science 2005)							



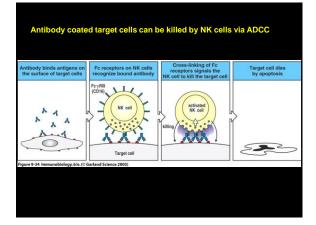
Disease	Organism	Toxin	Effects in vivo
Tetanus	Clostridium tetani	Tetanus toxin	Blocks inhibitory neuron action leading to chronic muscle contraction
Diphtheria	Corynebacterium diptheriae	Diphtheria toxin	Inhibits protein synthesis leading to epithelial-cell damage, and myocarditis
Gas Gangrene	Clostridium perfringens	Clostridial-α toxin	Phospholipase leading to cell death
Cholera	Vibrio cholerae	Cholera toxin	Activates adenylate cyclase, elevates cAMP in cells, keading to changes in intestinal epithelial cells that cause loss of water and electrolytes
Anthrax	Bacillus anthracis	Anthrax toxic complex	Increases vascular permeability leading to edema, hemorrhage and circulatory collapse
Botulism	Clostridium	Botulinus toxin	Blocks release of acetylcholine leading to paralysis
	botulinum		
Whooping		Pertussis toxin	ADP-ribosylation of G proteins leading to lymphocytosis
cough	Bordetella pertussis	Tracheal cytotoxin	Inhibits cilia and causes epithelial-cell loss
Scarlet		Erythrogenic toxin	Vasodilation leading to scarlet-fever rash
fever	Streptococcus pyogenes	Leukocidin streptolysins	Kills phagocytes, allowing bacterial survival
Food poisoning	Staphylococcus aureus	Staphylococcal enterotoxin	Acts on intestinal neurons to induce vomiting. Also a potent T-cell mitogen (SE superantigen)
Toxic shock syndrome	Staphylococcus aureus	Toxic-shock syndrome toxin	Causes hypotension and skin loss. Also a potent T- cell mitogen (TSST 1 superantigen)

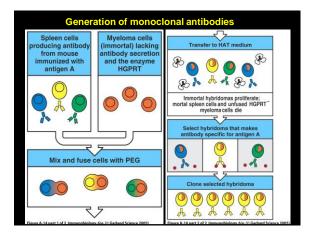


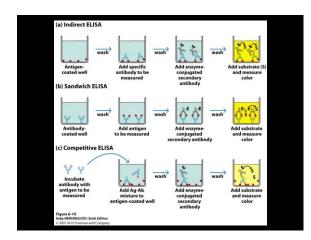
The ingestion of particulate matter is called phagocytosis.

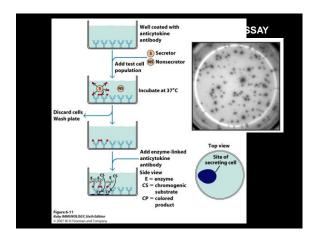

The coating of an organism by molecules that facilitate its uptake and destruction by phagocytes is called opsonization

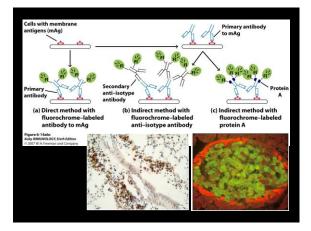


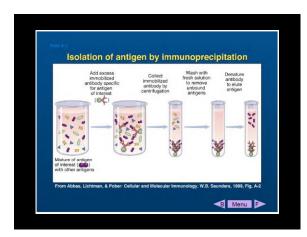


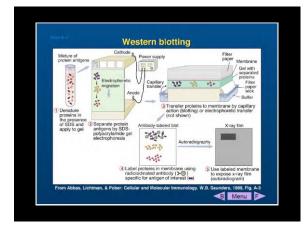


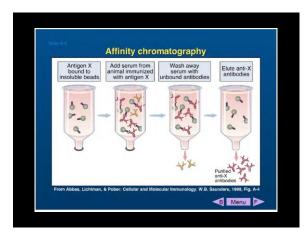


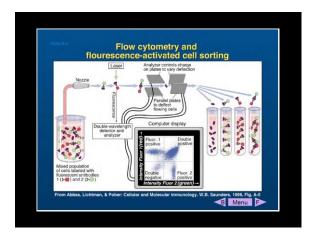




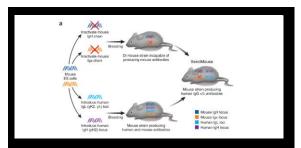






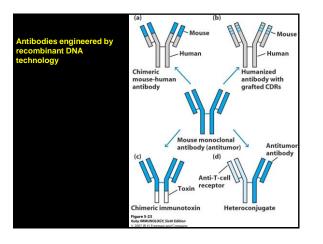


Recognition by monoc	onal antibodies of tu	mor-specific antigen
Tumor-specific antibody	Tumor-specific antibody conjugated to toxin	Tumor-specific antibody conjugated to radioisotope
ga	1	*23
Antibodies bind to the tumor cell	Antibody-toxin conjugates bind to the tumor cell	Radioactive antibody binds to the tumor cell
COI6		The second secon
NK cells with Fc receptors (CD16) are activated to kill the tumor cells	Conjugates are internalized, killing the cell	Radiation kills the tumor cell and neighboring tumor cells

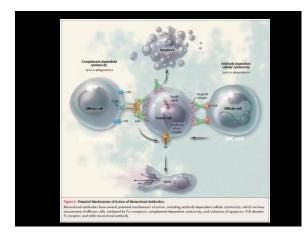

XenoMouseTM Technology (Abgenix Inc.)

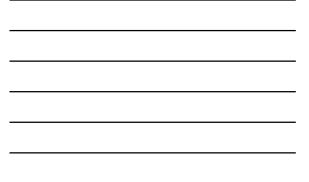
A potentially rapid approach to developing therapeutic monoclonal antibodies for the treatment of cancer.

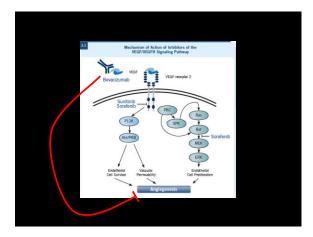
Series of strains of mice in which the endogenous murine immunoglobulin heavy chain and kappa light chain have been inactivated and the majority of the corresponding human immunoglobulin loci have been introduced as transgenes.

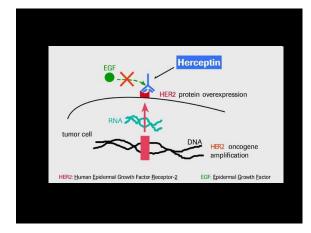

When antigenically challenged the XenoMice produce human rather than mouse antibodies. High affinity monoclonal antibodies can be generated offering the potential for rapid progress to clinical trials.

Abgenix's anti-EGFR is a fully human antibody which can inhibit many different tumors (growth and progression) in preclinical and clinical studies has received FDA approval for colorectal cancer.


Panitumumab represents the first fully human antibody developed from XenoMouse technology to be approved by a regulatory agency. This has been an important milestone in validating XenoMouse strains as well as other human immunoglobulinproducing mouse technologies as sources for therapeutic antibodies. The path from initiation of XenoMouse technology development to regulatory approval took ~15 years, including 6 years for mouse strains derivation and mAb development and 6.5 wears of clinical development.




Antibody	Brand name	Type	Target	Approved Treatments
Abciximab	ReoPro	chimeric	inhibition of glycoprotein IIb/IIIa	cardiovascular disease
Adalimumab	Humira	human	inhibition of TNF-a signalling	inflammatory diseases
Alemtuzumab	Campath	humanized	CD52	chronic lymphocytic leukemia
Basiliximab	Simulect	chimeric	IL-2 receptor a	transplant rejection
Bevacizumab	Avastin	humanized	vascular endothelial growth factor	colorectal cancer
Cetuximab	Erbitux	chimeric	epidermal growth factor receptor	colorectal cancer
Daclizumab	Zenapax	humanized	IL-2 receptor a	transplant rejection
Eculizumab	Soliris	humanized	complement system protein C5	inflammatory diseases
Efalizumab	Raptiva	humanized	CD11a	inflammatory diseases (psoriasis)
Ibritumomab-tiuxetan	Zevalin	murine	CD20	Non-Hodgkin lymphoma
Infliximab	Remicade	chimeric	inhibition of TNF-a signaling	inflammatory diseases (auto-immune
Muromonab-CD3	Orthoclone OKT3	murine	T cell CD3 receptor	transplant rejection
Natalizumab	Tysabri	humanized	T cell VLA4 receptor	multiple sclerosis
Omalizumab	Xolair	humanized	IgE	inflammatory diseases (asthma)
Payilizumab	Synagis	humanized	an epitope of the F protein of RSV	RSV infection
Panitumumab	Vectibix	human	epidermal growth factor receptor	colorectal cancer
Ranibizumab	Lucentis	humanized	vascular endothelial growth factor	macular degeneration
Gemtuzumab-ozogamicin	Mylotarg	humanized	CD33	acute myelogenous leukemia
Rituximab	Rituxan, Mabthera	chimeric	CD20	Non-Hodgkin lymphoma
Tositumomab	Bexxar	murine	CD20	Non-Hodgkin lymphoma
Trastuzumab	Herceptin	humanized	ErbB2/HER2/EGFR	breast cancer



Rituximab also called Rituxan (IDEC Pharmaceuticals/Genentech) is the first monoclonal antibody approved for the treatment of cancer. This antibody is directed against CD20 molecule. It is effective as a single agent in patients with relapsed or refractory low grade or follicular non-Hodgkin's lymphoma.

It is also in use as combination therapy with chemotherapy, IFN- α 2a and radioimmunotherapy (bound to beta emitting radioisotope 90 yttrium).

Herceptin (Genetech) is another monoclonal approved for human use. Herceptin (also called anti-Her2/neu) is against the Her2/neu oncogene which encodes a protein tyrosine kinase which is overexpressed in about 30% of breast cancers.

