

Integrated Feathering for Craniospinal Irradiation

Angelia Landers, Virginia Nettleton, Katelyn Palermo, Yelena Vakhnenko, Wenyin Shi, Amy S Harrison

Radiation Oncology, Thomas Jefferson University

TJU Radiation Oncology

- Center City, Philadelphia
- Bodine Center for Radiation Therapy
- 9 physicians
- 10 physicists
- 5 dosimetrists
- 23 therapists

TJU Radiation Oncology

- 2 Varian TrueBeams
- 2 Elekta Agilities
- 1 ViewRay (coming soon)
- VMAT, IMRT, 3D, TBI, TSET, ...
- CSI
 - ~4/year

Outline

Background
Classic CSI
Integrated Feathering
Other CSI methods

Outline

Background
Classic CSI
Integrated Feathering
Other CSI methods

Medulloblastoma

- Tumor of the central nervous system (CNS)
- Occurs in both children and adults
 - Most common malignant brain tumor in children
- Usually originate in the cerebellum
- Spreads to CNS through cerebrospinal fluid

Medulloblastoma

Symptoms

- Headaches
- Nausea or vomiting
- Clumsiness
- Problems with handwriting
- Visual problems

Symptoms (if spread to spine)

- Back pain
- Trouble walking
- Problems controlling bladder and bowel functions

Cerebrospinal Fluid (CSF)

Cerebellum

Craniospinal Irradiation (CSI)

- Treat meduloblastoma and other tumors that may spread through CSF
- Irradiates the entire central nervous system
 - Whole brain and spine

History

CEREBELLAR MEDULLOBLASTOMA: TREATMENT BY IRRADIATION OF THE WHOLE CENTRAL NERVOUS SYSTEM

by

Edith Paterson and R. F. Farr

- First proposed in 1953 to irradiate "the entire brain and cord as one undivided volume"
- Principle from post-mortem findings of disease throughout the brain and cord

Outline

Background Classic CSI

Integrated Feathering
Other CSI methods

Classic CSI

- Prone position
- Requires adjacent fields that must be matched
 - 2 opposed lateral whole brain fields
 - 1-2 posterior spinal fields
- Matching requires gantry, collimator, and couch rotations
- Important to avoid overdosing the spinal cord

Spinal Fields

- Two spinal fields if spinal cord > 36 cm
- Children can usually be treated with one field
- Adults need two fields
 - "Matched" by employing a gap between fields

Field Matching

- Between lateral brain fields and superior spinal field
 - Requires collimator and couch rotation

SOH CAH TOA

TOA

$$\tan x = \frac{opposite}{adjacent}$$

$$\tan a = \frac{y}{SAD}$$

Couch Rotation Example

$$\tan a = \frac{y}{SAD}$$

Couch Rotation Example

$$\tan a = \frac{y}{SAD}$$

$$\tan a = \frac{18 \, cm}{100 \, cm}$$

$$a = \tan^{-1} \frac{18 cm}{100 cm}$$

$$a = 10.2^{\circ}$$

Field Matching

Beware of overdosing the cervical spine

Field Arrangements

Avoiding divergence into the eyes/lenses is difficult

Field Matching

- Between two posterior spinal fields
- Gap calculation

$$Gap = \frac{Y_1d}{SSD_1} + \frac{Y_2d}{SSD_2}$$

$$Gap = Gap_1 + Gap_2$$

$$\frac{B_1}{B_2} = \frac{A_1}{A_2}$$

$$B_1 = \frac{A_1 B_2}{A_2}$$

$$Gap_1 = \frac{Y_1d}{SSD_1}$$

$$Gap_2 = \frac{Y_2d}{SSD_2}$$

Gap Calculation

$$Gap = Gap_1 + Gap_2 = \frac{Y_1d}{SSD_1} + \frac{Y_2d}{SSD_2}$$

5 cm depth

88 cm SSD

90 cm SSD

5 cm depth

6 cm

88 cm SSD

90 cm SSD

$$Gap = \frac{Y_1d}{SSD_1} + \frac{Y_2d}{SSD_2}$$

$$d = 5 cm$$

$$Y_1 = 18 cm$$

$$SSD_1 = 88 cm$$

$$Y_2 = 6 cm$$

$$SSD_2 = 90 cm$$

$$Gap = \frac{Y_1d}{SSD_1} + \frac{Y_2d}{SSD_2}$$

$$Gap = \frac{(18 cm)(5 cm)}{(88 cm)} + \frac{(6 cm)(5 cm)}{(90 cm)}$$

$$Gap = 1.02 cm + 0.33 cm$$

$$d = 5 cm$$

$$Y_1 = 18 cm$$

$$SSD_1 = 88 cm$$

$$Y_2 = 6 cm$$

$$SSD_2 = 90 cm$$

Gap = 1.35 cm

Field Borders

- Brain fields
 - Standard whole brain field with flash superiorly and posteriorly
- Upper spinal field
 - Junction with lower spinal field at around T12/L1
- Lower spinal field
 - Standard spade-shaped field

Feathering

- Shift the field junction match lines throughout treatment
- Needs to be accounted for during planning
- Typically 1 cm shift
- Every 5-6 fractions

Patient Setup

- Prone
 - Visualize field junctions on patient surface with light fields
- Supine
 - More comfortable
 - More reproducible
- Head extended to allow for chin clearance for each feather

Field Setup

- Brain fields
 - Rotate gantry to avoid lenses
 - Set inferior border to ensure chin clearance after shifts
 - Rotate couch to match inferior borders
- Upper spinal field
 - Rotate collimator for brain fields to match spinal field
- Lower spinal field
 - Overlap with upper spinal field <u>anterior</u> of cord (avoid hotspot)

Outline

Background
Classic CSI
Integrated Feathering
Other CSI methods

Example

- Adult CSI patient
 - 4 fields
- 36 Gy in 18 fractions
- Feather every 6 fractions
 - 3 plans

Dosimetrists have to:

- Create an additional plan for each feather
- Prepare/export multiple plans

Doctors have to:

- Approve 3 plans + composite
- Review 3 sets of port films

Physicists have to:

- Check 3 different plans
- Confirm match/shift in each plan

Therapists have to:

- Port film/set up patient 3 times
 - Takes up more machine time

Integrated Feathering

- Field-in-field beams
 - Feather across the match line region in one plan
 - 3 equally-weighted segments
 - 1 cm shift between segments
- Same plan throughout entire treatment

Integrated Feathering

Classic Feathering

New Workload

Dosimetrists have to:

- Create one field-in-field plan
 - Field matching is the longest part
 - Takes the same time as 3 plans (1 hr)
- Prepare/export one plan (30 min)
 - 1/3 less work

Workload

Physicists have to:

- Check one plan
 - Learning curve
 - Should reduce plan review time

Workload

Therapists have to:

- Port film/set up patient once
 - Same setup for each fraction
 - Less risk/room for error (safer for patient)

Treatment Schedule

Treatment Schedule

80 min saved

Setup Error

- Simulated isocenter setup errors of upper spinal field
 - 2 mm shifts up to 10 mm
- Classic CSI plans
 - Shifted one of the three upper spinal fields (1/3 affected)
- Integrated CSI plans
 - Shifted 1/3 fractions of upper spinal field-in-field

Setup Error

Integrated Feathering

- Decreases staff workload
- Decreases patient time on table
- Reduces effects of potential setup errors

Outline

Background
Classic CSI
Integrated Feathering
Other CSI methods

Intensity-modulated radiation therapy and volumetric-modulated arc therapy for adult craniospinal irradiation—A comparison with traditional techniques

Matthew T. Studenski, Ph.D.,* Xinglei Shen, M.D.,* Yan Yu, Ph.D.,* Ying Xiao, Ph.D.,* Wenyin Shi, M.D.,*

Tithi Biswas, M.D., Maria Werner-Wasik, M.D., and Amy S. Harrison, M.S.

School of Medicine, East Carolina University, Greenville, NC

*Department of Radiation Oncology, Jefferson Medical College and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA; and †Department of Radiation Oncology, Brody

CSI: 3D vs. IMRT/VMAT

- 10 patients
- 36 Gy

3D

- 100 cm SSD
- Prone

IMRT

- 5-field cranial
- 5-field spinal

VMAT

- 2 full arcs cranial
- 1 200° arc spinal

CSI: 3D vs. IMRT/VMAT

Studenski, Matthew T., et al. "Intensity-modulated radiation therapy and volumetric-modulated arc therapy for adult craniospinal irradiation—a comparison with traditional techniques." Medical Dosimetry 38.1 (2013): 48-54.

Studenski, Matthew T., et al. "Intensity-modulated radiation therapy and volumetric-modulated arc therapy for adult craniospinal irradiation—a comparison with traditional techniques." Medical Dosimetry 38.1 (2013): 48-54.

CSI: 3D vs. IMRT/VMAT

3D	IMRT	VMAT
 Most efficient Negligible OAR dose increase for cranial 	OAR sparingTarget coverage	OAR sparingTarget coverage
Higher dose to OARs for spinal fields	 Difficult to QA junctions Hard to control hotspots outside of PTV Longest treatment times 	 Difficult to QA junctions Hard to control hotspots outside of PTV Low dose spread

CRANIOSPINAL IRRADIATION TECHNIQUES: A DOSIMETRIC COMPARISON OF PROTON BEAMS WITH STANDARD AND ADVANCED PHOTON RADIOTHERAPY

Myonggeun Yoon, Ph.D.,* Dong Ho Shin, Ph.D.,* Jinsung Kim, Ph.D.,† Jong Won Kim,* Dae Woong Kim,* Sung Yong Park, Ph.D.,* Se Byeong Lee, Ph.D.,* Joo Young Kim, M.D.,* Hyeon-Jin Park, M.D.,‡ Byung_Kiu Park, M.D.,‡ and Sang Hoon Shin, M.D..§

*Proton Therapy Center, National Cancer Center, Goyang, Korea; †Department of Radiation Oncology, Samsung Medical Center, Seoul, Korea; †Pediatric Oncology Clinic, Center for Specific Organs Cancer, National Cancer Center, Goyang, Korea; and [§]Neuro-Oncology Clinic, Center for Specific Organs Cancer, National Cancer Center, Goyang, Korea

- 10 patients
- 1.8 Gy x 20 fractions = 36 Gy
- Three plans:
 - 1. 3D
 - Tomotherapy
 - 3. Proton

3D

Tomotherapy

Proton

Yoon, Myonggeun, et al. "Craniospinal irradiation techniques: a dosimetric comparison of proton beams with standard and advanced photon radiotherapy." International Journal of Radiation Oncology* Biology* Physics 81.3 (2011): 637-646.

Proton Beam Craniospinal Irradiation Reduces Acute Toxicity for Adults With Medulloblastoma

Aaron P. Brown, MD,* Christian L. Barney, BS, David R. Grosshans, MD, PhD,* Mary Frances McAleer, MD, PhD,* John F. de Groot, MD,† Vinay K. Puduvalli, MD,† Susan L. Tucker, PhD,‡ Cody N. Crawford, CMD,* Meena Khan, CMD,* Soumen Khatua, MD,§ Mark R. Gilbert, MD,† Paul D. Brown, MD,* and Anita Mahajan, MD*

Departments of *Radiation Oncology, [†]Neuro-Oncology, [‡]Bioinformatics and Computational Biology, and [§]Pediatric Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; and [§]Baylor College of Medicine, Houston, Texas

- 21 treated with photon
 - Classic CSI
- 19 treated with proton
 - Supine
 - Similar beam arrangements
 - Vertebral body-sparing with proton range

Brown, Aaron P., et al. "Proton beam craniospinal irradiation reduces acute toxicity for adults with medulloblastoma." International Journal of Radiation Oncology* Biology* Physics 86.2 (2013): 277-284.

b) Hematologic Toxicity: Nadir

c) Hematologic Toxicity: 1 month after RT

Proton CSI

- Dosimetry (Yoon et al)
 - Lower OAR organ equivalent doses
 - Significantly lower dose to the chest/abdomen
 - Similar dose to head & neck area
- Clinical outcomes (Brown et al)
 - Less acute gastrointestinal toxicities (nausea/vomiting)
 - Less hematologic toxicities
- Limited availability

Varian Auto-Feathering

- Eclipse v15.5
- Only for inverse optimized plans
- Controls hot and cold spots at junction

Take-Home Points

- Review math/geometry for CSI calculations
- Gantry, collimator, and couch rotations to match brain fields
- Integrated feathering ©
- IMRT/VMAT CSI
- Protons CSI

Thanks!

Sidney Kimmel Cancer Center Jefferson Health | NCI - designated

Until every cancer is cured