Integrated Feathering for Craniospinal Irradiation

Angelia Landers, Virginia Nettleton, Katelyn Palermo, Yelena Vakhnenko, Wenyin Shi, Amy S Harrison

Radiation Oncology, Thomas Jefferson University
TJU Radiation Oncology

- Center City, Philadelphia
- Bodine Center for Radiation Therapy
- 9 physicians
- 10 physicists
- 5 dosimetrists
- 23 therapists
TJU Radiation Oncology

- 2 Varian TrueBeams
- 2 Elekta Agilities
- 1 ViewRay (coming soon)
- VMAT, IMRT, 3D, TBI, TSET, ...
- CSI
 - ~4/year
Outline

Background
Classic CSI
Integrated Feathering
Other CSI methods
Outline

Background

Classic CSI

Integrated Feathering

Other CSI methods
Medulloblastoma

• Tumor of the central nervous system (CNS)
• Occurs in both children and adults
 • Most common malignant brain tumor in children
• Usually originate in the cerebellum
• Spreads to CNS through cerebrospinal fluid
Medulloblastoma

Symptoms
• Headaches
• Nausea or vomiting
• Clumsiness
• Problems with handwriting
• Visual problems

Symptoms (if spread to spine)
• Back pain
• Trouble walking
• Problems controlling bladder and bowel functions

https://www.stjude.org/disease/medulloblastoma.html
Cerebrospinal Fluid (CSF)

Cerebellum
Craniospinal Irradiation (CSI)

- Treat medulloblastoma and other tumors that may spread through CSF
- Irradiates the entire central nervous system
 - Whole brain and spine
History

CEREBELLAR MEDULLOBLASTOMA: TREATMENT BY IRRADIATION OF THE WHOLE CENTRAL NERVOUS SYSTEM

by

Edith Paterson and R. F. Farr

- First proposed in 1953 to irradiate “the entire brain and cord as one undivided volume”
- Principle from post-mortem findings of disease throughout the brain and cord
Outline

Background

Classic CSI

Integrated Feathering

Other CSI methods
Classic CSI

• Prone position
• Requires adjacent fields that must be matched
 • 2 opposed lateral whole brain fields
 • 1-2 posterior spinal fields
• Matching requires gantry, collimator, and couch rotations
• Important to avoid overdosing the spinal cord
Spinal Fields

- Two spinal fields if spinal cord > 36 cm
- Children can usually be treated with one field
- Adults need two fields
 - “Matched” by employing a gap between fields
Field Matching

- Between lateral brain fields and superior spinal field
- Requires collimator and couch rotation
Couch Rotation

\[\alpha \]

\[\text{SAD} \]

\[y \]
Couch Rotation

\[\text{SAD} \]

\[\alpha \]

\[y \]

SOH

CAH

TOA
Couch Rotation

TOA

\[\tan(x) = \frac{\text{opposite}}{\text{adjacent}} \]
Couch Rotation

\[
\tan \alpha = \frac{y}{SAD}
\]
Couch Rotation Example

\[
\tan \alpha = \frac{y}{SAD}
\]
Couch Rotation Example

\[\tan \alpha = \frac{y}{SAD} \]
\[\tan \alpha = \frac{18 \text{ cm}}{100 \text{ cm}} \]
\[\alpha = \tan^{-1} \frac{18 \text{ cm}}{100 \text{ cm}} \]
\[\alpha = 10.2^{\circ} \]
Field Matching

- Beware of overdosing the cervical spine
Field Arrangements

- Avoiding divergence into the eyes/lenses is difficult
Field Matching

- Between two posterior spinal fields
- Gap calculation
Gap Calculation

[Diagram of A-shaped structures]
Gap Calculation

![Diagram of gap calculation]
Gap Calculation

\[\text{Gap} = \frac{Y_1 d}{SSD_1} + \frac{Y_2 d}{SSD_2} \]
Gap Calculation

\[\text{SSD}_1 \] \quad \text{Gap} \quad \text{SSD}_2 \]

\[Y_1 \quad \text{Y}_2 \]
Gap Calculation

\[\text{Gap} = \text{Gap}_1 + \text{Gap}_2 \]
Gap Calculation

\[\text{SSD}_1 \]

\[\text{Gap}_1 \]

\[\text{d} \]

\[\text{Y}_1 \]
Gap Calculation
Gap Calculation

\[
\frac{B_1}{B_2} = \frac{A_1}{A_2}
\]
Gap Calculation

\[
\frac{B_1}{B_2} = \frac{A_1}{A_2}
\]
Gap Calculation

\[B_1 = \frac{A_1 B_2}{A_2} \]
Gap Calculation

\[
\text{Gap}_1 = \frac{Y_1 d}{SSD_1}
\]
Gap Calculation

\[Gap_2 = \frac{Y_2 d}{SSD_2} \]
Gap Calculation

\[\text{Gap} = \text{Gap}_1 + \text{Gap}_2 = \frac{Y_1 \cdot d}{\text{SSD}_1} + \frac{Y_2 \cdot d}{\text{SSD}_2} \]
Gap Calculation Example

88 cm SSD

5 cm depth

90 cm SSD
Gap Calculation Example

88 cm SSD

18 cm

90 cm SSD

5 cm depth

6 cm
Gap Calculation Example

\[\text{Gap} = \frac{Y_1 d}{SSD_1} + \frac{Y_2 d}{SSD_2} \]

\begin{align*}
 d &= 5 \text{ cm} \\
 Y_1 &= 18 \text{ cm} \\
 SSD_1 &= 88 \text{ cm} \\
 Y_2 &= 6 \text{ cm} \\
 SSD_2 &= 90 \text{ cm}
\end{align*}
Gap Calculation Example

\[
\text{Gap} = \frac{Y_1 d}{SSD_1} + \frac{Y_2 d}{SSD_2}
\]

\[
\text{Gap} = \frac{(18 \text{ cm})(5 \text{ cm})}{(88 \text{ cm})} + \frac{(6 \text{ cm})(5 \text{ cm})}{(90 \text{ cm})}
\]

\[
\text{Gap} = 1.02 \text{ cm} + 0.33 \text{ cm}
\]

\[
\text{Gap} = 1.35 \text{ cm}
\]

d = 5 \text{ cm}
Y_1 = 18 \text{ cm}
SSD_1 = 88 \text{ cm}
Y_2 = 6 \text{ cm}
SSD_2 = 90 \text{ cm}
Field Borders

• Brain fields
 • Standard whole brain field with flash superiorly and posteriorly

• Upper spinal field
 • Junction with lower spinal field at around T12/L1

• Lower spinal field
 • Standard spade-shaped field
Feathering

- Shift the field junction match lines throughout treatment
- Needs to be accounted for during planning
- Typically 1 cm shift
- Every 5-6 fractions
No feathering

With feathering
Patient Setup

• Prone
 • Visualize field junctions on patient surface with light fields

• Supine
 • More comfortable
 • More reproducible

• Head extended to allow for chin clearance for each feather
Field Setup

- Brain fields
 - Rotate gantry to avoid lenses
 - Set inferior border to ensure chin clearance after shifts
 - Rotate couch to match inferior borders
- Upper spinal field
 - Rotate collimator for brain fields to match spinal field
- Lower spinal field
 - Overlap with upper spinal field anterior of cord (avoid hotspot)
Outline

Background
Classic CSI
Integrated Feathering
Other CSI methods
Example

- Adult CSI patient
 - 4 fields
- 36 Gy in 18 fractions
- Feather every 6 fractions
 - 3 plans
Workload

Dosimetrist
Doctor
Physicist
Therapist
Dosimetrists have to:
- Create an additional plan for each feather
- Prepare/export multiple plans
Workload

Doctors have to:

- Approve 3 plans + composite
- Review 3 sets of port films
Workload

Physicists have to:
- Check 3 different plans
- Confirm match/shift in each plan
Workload

Therapists have to:
- Port film/set up patient 3 times
 - Takes up more machine time
Workload

Dosimetrists

Doctors

Physicists

Therapists
Workload

Dosimetrist Doctor Physicist Therapist
Integrated Feathering

- Field-in-field beams
 - Feather across the match line region in **one plan**
 - 3 equally-weighted segments
 - 1 cm shift between segments
- Same plan throughout entire treatment
New Workload

Dosimetrists have to:
- Create one field-in-field plan
 - Field matching is the longest part
 - Takes the same time as 3 plans (1 hr)
- Prepare/export one plan (30 min)
 - 1/3 less work
Physicists have to:
- Check one plan
 - Learning curve
 - Should reduce plan review time
Workload

Therapists have to:

• Port film/set up patient once
 • Same setup for each fraction
 • Less risk/room for error (safer for patient)
Treatment Schedule

Fx 1 +40 min of port film
Fx 7 +40 min of port film
Fx 13 +40 min of port film
Treatment Schedule

Fx 1 +39 min of port film
Fx 2
Fx 3
Fx 4
Fx 5
Fx 6
Fx 7
Fx 8
Fx 9
Fx 10
Fx 11
Fx 12
Fx 13
Fx 14
Fx 15
Fx 16
Fx 17
Fx 18

80 min saved
Setup Error

- Simulated isocenter setup errors of upper spinal field
 - 2 mm shifts up to 10 mm
- Classic CSI plans
 - Shifted one of the three upper spinal fields (1/3 affected)
- Integrated CSI plans
 - Shifted 1/3 fractions of upper spinal field-in-field
Setup Error

Cord max % Difference

Upper Spinal Field Isocenter Shift (mm)

-10 -8 -6 -4 -2 0 2 4 6 8 10

Inf Sup

Classic Integrated
Integrated Feathering

- Decreases staff workload
- Decreases patient time on table
- Reduces effects of potential setup errors
Outline

Background
Classic CSI
Integrated Feathering
Other CSI methods
Intensity-modulated radiation therapy and volumetric-modulated arc therapy for adult craniospinal irradiation—A comparison with traditional techniques

Matthew T. Studenski, Ph.D.,* Xinglei Shen, M.D.,* Yan Yu, Ph.D.,* Ying Xiao, Ph.D.,* Wenyin Shi, M.D.,* Tithi Biswas, M.D.,† Maria Werner-Wasik, M.D.,* and Amy S. Harrison, M.S.*

*Department of Radiation Oncology, Jefferson Medical College and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA; and †Department of Radiation Oncology, Brody School of Medicine, East Carolina University, Greenville, NC
CSI: 3D vs. IMRT/VMAT

- 10 patients
- 36 Gy

3D
- 100 cm SSD
- Prone

IMRT
- 5-field cranial
- 5-field spinal

VMAT
- 2 full arcs cranial
- 1 200° arc spinal

CSI: 3D vs. IMRT/VMAT

CSI: 3D vs. IMRT/VMAT

<table>
<thead>
<tr>
<th>Pros</th>
<th>3D</th>
<th>IMRT</th>
<th>VMAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Most efficient</td>
<td>• OAR sparing</td>
<td>• OAR sparing</td>
<td></td>
</tr>
<tr>
<td>• Negligible OAR dose increase for cranial</td>
<td>• Target coverage</td>
<td>• Target coverage</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cons</th>
<th>3D</th>
<th>IMRT</th>
<th>VMAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Higher dose to OARs for spinal fields</td>
<td>• Difficult to QA junctions</td>
<td>• Difficult to QA junctions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Hard to control hotspots outside of PTV</td>
<td>• Hard to control hotspots outside of PTV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Longest treatment times</td>
<td>• Longest treatment times</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Low dose spread</td>
<td></td>
</tr>
</tbody>
</table>
CRANIOSPINAL IRRADIATION TECHNIQUES: A DOSIMETRIC COMPARISON OF PROTON BEAMS WITH STANDARD AND ADVANCED PHOTON RADIOTHERAPY

Myonggeun Yoon, Ph.D.,* Dong Ho Shin, Ph.D.,* Jinsung Kim, Ph.D.,† Jong Won Kim,* Dae Woong Kim,* Sung Yong Park, Ph.D.,* Se Byeong Lee, Ph.D.,* Joo Young Kim, M.D.,* Hyeon-Jin Park, M.D.,‡ Byung_Kiu Park, M.D.,‡ and Sang Hoon Shin, M.D.§

*Proton Therapy Center, National Cancer Center, Goyang, Korea; †Department of Radiation Oncology, Samsung Medical Center, Seoul, Korea; ‡Pediatric Oncology Clinic, Center for Specific Organs Cancer, National Cancer Center, Goyang, Korea; and §Neuro-Oncology Clinic, Center for Specific Organs Cancer, National Cancer Center, Goyang, Korea
CSI: Proton vs. Photon

- 10 patients
- 1.8 Gy x 20 fractions = 36 Gy
- Three plans:
 1. 3D
 2. Tomotherapy
 3. Proton

Proton Beam Craniospinal Irradiation Reduces Acute Toxicity for Adults With Medulloblastoma

Aaron P. Brown, MD,* Christian L. Barney, BS,‖ David R. Grosshans, MD, PhD,* Mary Frances McAleer, MD, PhD,* John F. de Groot, MD, † Vinay K. Puvvulli, MD, † Susan L. Tucker, PhD, ‡ Cody N. Crawford, CMD,* Meena Khan, CMD,* Soumen Khatua, MD,§ Mark R. Gilbert, MD, † Paul D. Brown, MD,* and Anita Mahajan, MD*

Departments of *Radiation Oncology, †Neuro-Oncology, ‡Bioinformatics and Computational Biology, and §Pediatric Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; and ‖Baylor College of Medicine, Houston, Texas
CSI: Proton vs. Photon

- 21 treated with photon
 - Classic CSI
- 19 treated with proton
 - Supine
 - Similar beam arrangements
 - Vertebral body-sparing with proton range
CSI: Proton vs. Photon

CSI: Proton vs. Photon

CSI: Proton vs. Photon

Proton CSI

• Dosimetry (Yoon et al)
 • Lower OAR organ equivalent doses
 • Significantly lower dose to the chest/abdomen
 • Similar dose to head & neck area
• Clinical outcomes (Brown et al)
 • Less acute gastrointestinal toxicities (nausea/vomiting)
 • Less hematologic toxicities
• Limited availability
Varian Auto-Feathering

- Eclipse v15.5
- Only for inverse optimized plans
- Controls hot and cold spots at junction
Take-Home Points

• Review math/geometry for CSI calculations
• Gantry, collimator, and couch rotations to match brain fields
• Integrated feathering 😊
• IMRT/VMAT CSI
• Protons CSI
Thanks!

Sidney Kimmel Cancer Center
Jefferson Health® | NCI – designated

Until every cancer is cured