

Targeting Prostate Cancer Stem Cells

Wendy J. Huss, PhD Department of Pharmacology and Therapeutics Roswell Park Cancer Institute Buffalo NY

- Historical Research, Identification of Cancer Stem Cells in Leukemia
- Techniques to Identify Cancer Stem Cells
- Prostate (Cancer) Stem Cells
 - Identification
 - Therapy

Definition of (Cancer) Stem Cells

Benign and Cancer Stem Cells:

Self-renewal - the ability to go through numerous cycles of cell division while maintaining the undifferentiated state

Potency - the capacity to differentiate into specialized cell types. In the strictest sense, this requires stem cells to be either totipotent or pluripotent - to be able to give rise to any mature cell type.

Cancer Stem Cells:

Generate all heterogeneous lineages of cells within a tumor

Suggests a hierarchy of tumor initiating capabilities

Cancer Stem Cell Hypothesis is <u>NOT</u> New

1950-1970's

G. Barry Pierce: proposed organ cell hierarchy of organogenesis of tumorigenesis

1990's

John Dick: evidence for the existence of cancer stem cells in Acute Myeloid Leukemia

Cancer Stem Cells in the Headlines

BBC August 1, 2012

Cancer stem cell discovery could signal 'paradigm shift' By Pallab Ghosh

Fox News September 27, 2012

Common cancer treatments may create dangerous cancer stem cells By Charles Q. Choi

Forbes October 09, 2012

Cancer Stem Cell Therapy: Real Or Just Hype? By Nathan Sadeghi-Nejad

The New Yorker September 7, 2014

The Transformation By Jerome Groopman

Cancer Stem Cell Hypothesis

Cancer stem cell

Cancer Stem Cell Identification

Cell Identification with Antibodies

Flow Cytometry

Flow Activated Cell Sorting

Lodish et. al., NCBI.

Bone Marrow Transplants in Mice

Drugs Today 2002, 38(2): 103

First Demonstration of Cancer Stem Cells

In vivo assay for human leukemia – Demonstrated different stages of AML

could engraft in irradiated mice

had colony formation

CD34+CD38-, but not CD34+CD38+ cells could recapitulate human AML in mice

Lapidot, et.al., Nature: 367; 645-648 (1994)

Stem Cell Protection Mechanisms

Common protective mechanisms between benign and cancer stem cells assays for discrimination and isolation

Multidrug resistance pumps Hoechst Efflux Side Population Vybrant[®] DyeCycle™ Violet Side Population

High Aldehyde Dehydrogenase Activity ALDEFLOUR ®

Radiation Protection: ↑Chk1 & Chk2 mediated DNA repair capacity

Telomerase Activity

Hematopoietic Side Population Phenotype

Goodell et al. (1996) J. Exp Med 183: 1797-806

ABC Transporters

- ATP binding cassette transporters- the largest family of drug transporters
- Evolutionarily conserved
- Present in plasma membrane and membranes of intracellular compartments
- Use of cellular ATP to drive transport
- 7 subfamilies and 50 ABC transporters

Dean, M. and R. Allikmets (2001). J Bioenerg Biomembr 33(6): 475-479.

ABC Transporter Super Family

Subfamilies	Most studied member	Role of the most studied member
ABCA1-12	ABCA1 and 2	Cholesterol efflux (A1), Drug resistance (A2)
ABCB1-11	ABCB1,6,11	Multi drug resistance, Hoechst (B1) Iron transport (B6) Bile salt transport (B11)
ABCC1-13	ABCC1-5	Drug resistance (C1,3) Nucleotide transport (C4,5) Chloride channels (C7)
ABCD1-4	-	-
ABCF1-3	-	-
ABCE1	-	-
ABCG1-8	ABCG1, 2, 5, 8	Choiesteroi effiux (G1) Toxins, drugs, dyes e.g. Hoechst, rhodamine, DCV, steroids (G2)

Identification of Cancer Stem Cells in Solid Tumors

Add Antibody to Recognize Cancer Stem Cells (red) and Cancer Cells (blue)

Shackleton M et al., Cell 2009;138(5):822-829

Identification of Cancer Stem Cells in Solid Tumors

Shackleton M et al., Cell 2009;138(5):822-829

Prostate Cancer is Second Cause of Cancer Related Death in American Men

Estimated Cancer Deaths in the US in 2013

		Mon	Maman		
Lung & bronchus	28%	306.920	273.430	26%	Lung & bronchus
Prostate	10%			14%	Breast
Colon & rectum	9%			9%	Colon & rectum
Pancreas	6%			7%	Pancreas
Liver & intrahepatic	5%			5%	Ovary
bile duct				4%	Leukemia
Leukemia	4%			3%	Non-Hodgkin
Esophagus	4%				lymphoma
Urinary bladder	4%			3%	Uterine corpus
Non-Hodgkin	3%			2%	Liver & intrahepatic
lymphoma					bile duct
Kidney & renal pelvis	3%			2%	Brain/other nervous system
All other sites	24%			25%	All other sites

Clinical Significance: Castration Resistant Prostate Cancer

Luminal cells
Stem/progenitor cells

Organ Stem Cells

Cancer Stem Cells

Cancer stem cell

Schematic Depiction of the Prostatic Duct

Abate-Shen, C. and M. M. Shen (2000). Genes Dev 14(19): 2410-2434.

Abcg2+ Cells are Located in Stem Cell Compartment

ABCG2- Blue AR- Red

ABCG2- Blue p63- Red

ABCG2 Inhibition Increases Intracellular Androgen and Androgen Receptor

Huss, W. J., et al. (2005). "Cancer Res 65(15): 6640-6650.

Androgen Receptor (AR) Regulation by Androgens

Prostate Benign and Cancer Stem Cells

Stroma Signaling

Androgen Deprivation Therapy Recurrent Prostate Cancer

28

Inhibition of ABC Transporters Before Androgen Deprivation to Target Cancer Stem Cells

Inhibition of ABC Transporters Before Androgen Deprivation to Target Cancer Stem Cells

<u>Hypothesis:</u> ABCG2 efflux of androgen inhibits prostate stem cell differentiation to maintain stem cell properties

<u>Specific aims</u>:

1. *Determine the mechanism of androgen efflux to maintain stem cell properties.* ABCG2 mediated androgen efflux inhibits AR induced prostate stem cell differentiation.

2. Identify regulators of the side population phenotype that contribute to maintaining prostate stem cell properties.

Prostate stem cells within the side population require ABCG2 expression.

3. Determine the effect of abrogated ABCG2 function on the prostate stem cell niche. ABCG2 inhibition depletes stem cell compartment and the prostate is unable to serially regenerate.

Aim 1: Inhibiting ABCG2 Mediated Androgen Efflux Increases AR Nuclear Translocation

ABCG2 expressing HPr-1-AR cells (Similar Results in CWR-R1)

Neha Sabnis

Aim 1: Inhibiting ABCG2 Mediated Androgen Efflux Increases Expression of Luminal Differentiation Markers

ABCG2-expressing HPr-1-AR cells (Similar Results in CWR-R1)

Neha Sabnis

Summary Aim 1 and Future Directions

ABCG2 inhibition increases nuclear AR & expression of AR regulated differentiation markers

Determine if differentiation is regulated by AR activation inhibit AR and determine differentiation capabilities

Hypothesis-Inhibition of ABCG2-Mediated Androgen Efflux Eliminates the Prostate Cancer Stem Cell Compartment

Aims

- Determine AR Function with ABCG2 Inhibition
- Determine Stem Cell Properties of ABCG2 Expressing Cells
- Determine the Role of ABCG2 in Stem Cell Maintenance

ABCG2 Expression in Side Population from Human Prostate Specimens

Testing Prostate Stem Cell Properties with Tissue Recombination

Embryonic Rodent Urogenital Tract

B. Foster

Tissue Recombination of rUGM and Putative Stem Cells

H&E analysis of side population cells + UGM ↓

FISH analysis for epithelial species identification, IHC analysis for ³⁸ differentiation markers

Serial Tissue Recombinations

Summary Aim 2 and Future Directions

Side Population Assay enriches for Prostate Stem Cells

Next-Determine if Side Population Assay enriches for Prostate <u>Cancer</u> Stem Cells

Hypothesis-Inhibition of ABCG2-Mediated Androgen Efflux Eliminates the Prostate Cancer Stem Cell Compartment

Aims

- Determine AR Function with ABCG2 Inhibition
- Determine Stem Cell Properties of ABCG2 Expressing Cells
- Determine the Role of ABCG2 in Stem Cell Maintenance

ABCG2 Inhibition and Androgen Retention Leads to Delayed Growth Response

Sphere Formation Assay

Sabnis unpublished data

Inhibiting ABCG2 Function Reduces Sphere Forming Capabilities

Samant MD, Jackson CM, Felix CL, Jones AJ, Goodrich DW, Foster BA, and Huss WJ. Stem Cells and Development 2015, 24(10): 1236-1251.

CWR-R1 cells

Gangavarapu KJ, Azabdaftari G, Morrison CD, Miller A, Foster BA, Huss WJ. Stem Cell Research and Therapy 2013; 4:132.

Ko143 inhibits ABCG2>ABCB1>ABCC1

The Role of Androgens in Prostate

Tsujimura, A., et al. (2002). <u>J Cell Biol</u> **157**(7): 1257-1265.

ABCG2 null mouse model

- Abcg2 is deleted embryonically.
- Systemic deletion.
- By replacing exons 3 and 4 with a neomycin cassette via homologous recombination.

Zhou, S., et al. (2002). "Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo." <u>Proc Natl Acad Sci U S A</u> **99**(19): 12339-12344.

Aim 3: Abcg2 null prostate cells were more sensitized to reversan treatment than WT controls

Reversan inhibits ABCC1>ABCB1>ABCG2

Summary

ABCG2 is a marker of prostate (cancer) stem cells

Inhibition of ABCG2 forces prostate (cancer) stem cell differentiation

AR nuclear translocation Elevated differentiation markers Decreased cell growth Decreased sphere formation

Future Directions

Determine if decreased cancer stem cells reduces tumor recurrence

Cancer stem cell

Clinical significance: Differentiation therapy for prostate cancer

Acknowledgments

Huss Lab

Kalyan Gangavarapu, PhD Neha Sabnis, MS

Alumni

Mugdha Samant, PhD Carina Felix Brent Feudale, MD Courtney Jackson Grinu Mathew, PhD Paula Sotomayor, PhD Cecilia Choy, MS Mame Diop

Pharmacology & Therapeutics

Barbara Foster, PhD Candace Johnson, PhD

MTMR

Bryan Gillard Ellen Karasik, MS Michael Moser, PhD

Pathology Gissou Azabdaftari, MD Biostatistics Austin Miller, PhD

Urologic Oncology

James Mohler, MD Khurshid Guru, MD

Tissue Procurement

Carl Morrison, MD Philip Ferenczy, Nancy Reska, & Liz Breese

Flow Cytometry

Paul Wallace, PhD Earl Timm & Craig Jones

St. Jude Children's Research Hospital Brian Sorrentino, MD

MD Anderson Mark Titus, PhD

Funding NIDDK

Sklarow Foundation NYSTEM