
The interaction between HMGB1
and TLR4 dictates the outcome of

anticancer chemotherapy and

radiotherapy

Summary: For the last four decades, the treatment of cancer has relied on
four treatment modalities, namely surgery, radiotherapy, cytotoxic
chemotherapy, and hormonotherapy. Most of these therapies are believed
to directly attack and eradicate tumor cells. The emerging concept that
cancer is not just a disease of a tissue or an organ but also a host disease
relies on evidence of tumor-induced immunosuppression and
polymorphisms in genes involved in host protection against tumors. This
theory is now gaining new impetus, based on our recent data showing that
optimal therapeutic effects require the immunoadjuvant effect of tumor
cell death induced by cytotoxic anticancer agents. Here, we show that the
release of the high mobility group box 1 protein (HMGB1) by dying
tumor cells is mandatory to license host dendritic cells (DCs) to process
and present tumor antigens. HMGB1 interacts with Toll-like receptor 4
(TLR4) on DCs, which are selectively involved in the cross-priming of
anti-tumor T lymphocytes in vivo. A TLR4 polymorphism that affects the
binding of HMGB1 to TLR4 predicts early relapse after anthracycline-
based chemotherapy in breast cancer patients. This knowledge may be
clinically exploited to predict the immunogenicity and hence the efficacy
of chemotherapeutic regimens.
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Introduction

Both for the treatment of disseminated cancer and for the cure

of minimal residual disease (micrometastases), chemotherapy

is the main treatment, despite the severe side effects and the

minimal expectations of curing metastases. The oncological

armamentarium has been bolstered in the last 5 years by

the introduction of molecularly targeted therapies and anti-

angiogenic agents (1). The clinical development of

immunotherapy strategies is also encountering a renaissance

with the emerging Toll-like receptor (TLR) agonists (2), the

anti-cytotoxic T-lymphocyte antigen-4 (3), and programmed

death-1 (4) antibodies and refined vaccines and adoptive

therapies. The time has come to propose combination

therapies, based on the knowledge of the immunostimulatory

side effects of chemotherapeutic agents and the

immunoadjuvant effects of tumor cell death.
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We have known for decades that for a vaccine to elicit an

efficient immune response, adjuvants are required, i.e.

molecules that stimulate antigen-presenting cells (5, 6).

Janeway’s (7–9) extended self versus non-self model proposed

that immune responses would be triggered by microbes

through a set of pattern recognition receptors that bind to

conserved ‘pathogen-associated molecular patterns’ (PAMPs).

However, there is evidence, as first reported by Matzinger (10),

that antigen-presenting cells would recognize endogenous

danger/alarm signals from distressed, injured, or damaged

tissues. The danger model suggests that self-molecules can act

as ‘damage-associated molecular patterns’ (DAMPs). Injured or

damaged tissue can trigger acute and transient immune

responses against self-antigens (11, 12), because dying cells

release adjuvant factors that amplify and sustain dendritic cell

(DC) and T-cell-dependent immune responses (13–15). Uric

acid has been identified as an endogenous immune adjuvant

(16). In vitro, uric acid stimulated immature DCs to express

costimulatory molecules (16). In vivo, it augmented cytotoxic

T-lymphocyte (CTL) responses to immunizations with

particulate antigen but not to peptide-pulsed activated DCs.

Extracellular nucleotides are important regulators of

inflammation and immune response. Nucleotides released by

regulated exocytosis or passive leakage after cell damage bind

to P2 purinergic receptors expressed on DCs, thereby

promoting interleukin-1b (IL-1b) and tumor necrosis factor-

a (TNF-a) secretion and inhibiting T-helper 1 cell

differentiation (17). Recently, the roles of interferon (IFN)

type 1 and the N-ethyl-N-nitrosourea-induced germline

mutation 3d were described in the T-cell-dependent

immunogenicity of dying splenocytes expressing a

membrane-associated form of ovalbumin (OVA) (14, 15).

Several DAMPs, including hyaluronans, heat shock proteins

(HSPs), and fibronectin, have been described to be ligands of

TLRs (18) in the context of autoimmune tissue destruction,

atherosclerotic lesions, or during the degradation of

extracellular matrix (19). However, endogenous ‘danger

signals’ thus far have not been implicated in anti-tumor

immune responses. Here, we show that dying tumor cells

promoted by cancer therapies trigger a cognate immune

response in a TLR4-dependent fashion and that TLR4

triggering requires HMGB1 released by dying tumor cells.

The immune system participates in tumor regression
during chemotherapy or radiotherapy

Until now, no one has addressed the question of whether the

immune system might contribute to tumor eradication induced

by chemotherapy. The history of drug screening may explain why

this question has not been tackled before. Systematic drug

screening began in 1955 at the National Cancer Institute (NCI)

using rapidly dividing murine hematological malignancies

(L1210 and P388 leukemias) (1, 20). In an attempt to find

drugs active against solid tumors, the NCI changed strategies and

adopted the xenografting of about 60 human tumor cell lines into

immunodeficient hosts (21–23). While these screening systems

allowed for the linking of the expected mechanism of action with

the growth-inhibitory patterns of the anticancer drugs against

tumor cell lines, they failed to establish correlates between the

latter and clinical outcome in patients. Indeed, the study of

human tumor kinetics following xenografting into immuno-

compromised animals simply overlooks the contribution of T

cells [for nu/nu and severe combined immunodeficient (SCID)

mice], B cell (for SCID mice), and/or macrophage (for SCID

NOD mice)-dependent host defenses against tumors.

We first screened a large panel of mouse tumor cell lines for

their in vivo sensitivity to anticancer agents (such as doxorubicin,

docetaxel, oxaliplatin, and ionizing radiation) in both

immunocompetent or nu/nu BALB/c or C57BL/6 mice, in an

attempt to evaluate the role of T cells in the anti-tumor effects

mediated by such cytotoxic compounds. Some but not all

Table 1. Immunogenicity of conventional cytotoxic treatments

Tumor models Treatment Administration route Dose and schedule

Anti-tumor efficacy�

WT Nu/Nu TLR4� /�

GOS Oxaliplatin Systemic (i.p.) 5 mg/kg single injection 11 � �
GOS Irinotecan Systemic (i.p.) 120 mg/kg two injections (over 24 h) 11 11 ND
TS/A X-ray irradiation Local 10 G single irradiation 111 1/� 1/�
P03 Docetaxel Systemic (i.p.) 60 mg/kg single injection 111 111 ND
CT26 Doxorubicin Intratumoral 100 mg single injection 111 1/� 1/�
MCA205 X-ray irradiation Local 10 G single irradiation 111 111 ND

GOS, Glasgow osteosarcoma; TS/A, mammary adenocarcinoma; P03, pancreatic adenocarcinoma; CT26, colon adenocarcinoma; MCA205,
fibrosarcoma; i.p., intraperitoneally; ND, not done; WT, wildtype.
�111, 11, 1/� , and – represent good, moderate, poor, and no efficacy of anti-tumor treatment, respectively.
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protocols revealed a critical role for T cells in the observed anti-

tumor effects (Table 1). For instance, the doxorubicin-induced

regression of established CT26 tumors was more pronounced and

sustained in immunocompetent mice than in nu/nu littermates

(24). TS/A breast cancers reaching 30–50 mm2 diameter were

highly susceptible to 10 Gray-irradiation in immunocompetent

but not in nu/nu mice (25). The growth of the heterotransplanted

osteosarcoma Glasgow osteosarcoma (GOS) was hampered in

immunocompetent mice treated with systemic oxaliplatin but

not in nu/nu littermates (25). However, in some other instances,

such as treatment of established GOS, pancreatic P03 and

MCA205 sarcoma with irinotecan (26), docetaxel (26), or X-

rays, respectively, the anti-tumor effects were T-cell independent

(Fig. 1). Altogether, these data suggested that insult to tumor cells

can elicit cognate immune responses that contribute to tumor

regression after chemotherapy or radiotherapy.
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Fig. 1. T-cell-independent antitumor efficacy of chemotherapy or radiotherapy. (A, B) Glasgow osteosarcoma and P03 pancreatic adenocarcinoma
tumors were heterotransplanted in both immunocompetent and athymic (nu/nu) mice. When the tumors became palpable, mice were either left
untreated or were treated by systemic chemotherapy (irinotecan 120 mg/kg i.p. at day 5 and 6 for GOS and docetaxel 60 mg/kg i.p. at day 10 for P03).
(C) MCA205 tumors were injected into the right flank of immunocompetent and nu/nu mice. When the tumor reached 40 mm2, mice were either left
untreated or were treated by local X-ray irradiation (10 Grays). Results (mean tumor size� SEM, five mice per group) are representative of three
independent experiments. �Po 0.05.
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Contribution of TLR4 to the efficacy of anti-cancer drugs

Because cognate immune responses largely depend on innate

immunity (7), we investigated the innate effector mechanisms

that could account for T-cell activation during chemo- or

radiotherapy. To address whether TLRs could be involved, we

compared the efficacy of chemotherapy- or radiotherapy-

induced antitumor effects in wildtype (WT) versus TLR-

deficient hosts. TLR4 has previously been reported to play a

part in lung tumorigenesis caused by chemically induced

pulmonary inflammation (27). Because this observation did

not link TLR4 expression to the induction of specific anti-

tumor immune responses, we started to investigate the efficacy

of doxorubicin, X-rays, and oxaliplatin on established CT26,

TS/A, and GOS tumors, respectively, comparing the results

achieved in WT and Tlr4� /� mice. In all three tumor models,

TLR4 was consistently required for preventing tumor

outgrowth upon systemic chemotherapy or local radiotherapy

(25). Upon recognition of their ligands, TLRs transduce signals

through two pathways involving two distinct adapters, TRIF

(Toll/IL-1R domain containing adapter-inducing IFNb) and

MyD88 (myeloid differentiation primary response protein),

which is used by all TLRs except TLR3 (28). Hence, we

investigated the relevance of such adapters in the anti-tumor

efficacy mediated by oxaliplatin against GOS. Oxaliplatin could

promote tumor growth delay in WT as well as Trif� /� but not

in Myd88� /� mice, where no tumor retardation was observed,

a result also obtained in Tlr4� /� littermates.

To delineate the mechanism underlying the TLR4-dependent

anti-tumor effects, we set up in vivo assays aimed at

demonstrating that CTL priming induced by dying tumor cells

(as a vaccine) is selectively affected by the loss-of-function

mutation of TLR4. These experiments were performed using

EG7 cells, a thymoma cell line stably transfected with OVA.

Oxaliplatin-treated EG7 cells but not live EG7 cells could elicit

the differentiation of OVA-specific IFNg-producing T cells in

the draining lymph node by day five post-vaccine in WT mice.

However, Tlr4� /� mice were severely compromised in their

capacity to mount an immune response against dying EG7 cells

(25). This result was corroborated in C3H/HeJ mice (Fig. 2A),

which present a naturally occurring defect in the TLR4

signaling pathway. We extended this observation to distinct

apoptosis inducers (i.e. using X-rays) (Fig. 2B) and tumor

antigens. Doxorubicin-treated CT26 colon cancer or MCA205

sarcoma could efficiently prime tumor-specific T lymphocytes

in BALB/c and C57BL/6 mice, respectively, if such mice were

on a WT or Tlr2� /� background. However, no T-cell priming

was achieved in Tlr4� /� littermates (25). Cross-presentation

of OVA from dying EG7 (H-2b) cells was also compromised by

the TLR4 defect in hosts carrying a different major

histocompatibility complex (MHC) class I allele (H-2d) (25).

To formally establish that TLR4 must be harbored by host DCs,

we used mice that were transgenic for the diphtheria toxin

receptor under the control of the CD11c promoter (29). The

TLR4-dependent OVA-specific T-cell immunity was abolished

when conventional DCs were ablated by the injection of

diphtheria toxin (25).

We next set up in vitro experiments to directly assess the role

of TLR4 presented by DCs in the triggering of MHC class I and

II-restricted T-cell hybridomas (the OVA-specific B3Z and

B09710, respectively). In line with the results obtained in vivo,

live EG7 cells could not be processed and presented by DCs to

either of the two hybridomas. Only dying tumor cells (X-ray-

or oxaliplatin-treated EG7) could stimulate OVA-specific MHC

class I and II-restricted T cells, provided that DCs were derived

from WT mice or from animals lacking TLR1, TLR2, TLR3,

TLR5, TLR6, TLR7, or TLR9. Only Tlr4� /� DCs were deficient

in their capacity to present antigen from dying tumor cells in

vitro. Once again, both Tlr4� /� and Myd88� /� (not Trif� /� )

DCs failed to cross-present antigen from dying tumor cells to T

cells in vitro (25) (Fig. 3). Altogether, these data indicate that the

TLR4/MyD88 pathway determines the immunogenicity of

chemotherapy- or radiotherapy-induced tumor cell death and

is required for optimal therapeutic responses of tumors treated

by chemotherapy or radiotherapy.

HMGB1 as a ligand for TLR4

Cellular injury, degradation of extracellular matrix, and

atherosclerotic lesions can release DAMPs (10, 18). In contrast

to most TLRs, which interact with a restricted panel of ligands,

TLR2 and TLR4 are promiscuous receptors and can be triggered

by a variety of endogenous DAMPs (18). Indeed, a number of

endogenous proteins bind and stimulate TLR4, including

HSP60, HSP70, oxidized low-density lipoprotein, surfactant

protein A, hyaluronan breakdown products (19), fibronectin,

b-defensin (30), and the alarmin high-mobility group box 1

protein (HMGB1) (31, 32). The term ‘alarmin,’ coined by

Oppenheim, denotes an array of structurally diverse host

proteins rapidly released during infection or tissue damage

that have mobilizing and activating effects for host defense and

tissue repair. Alarmins include the defensins, eosinophil-

derived neurotoxin, cathelicidins, and HMGB1 (33). HMGB1

is a highly mobile nuclear protein (non-histone chromatin-

binding protein) that influences transcription and other

nuclear transactions (34, 35). HMGB1 is either secreted
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actively from inflammatory cells (36) or passively released as a

soluble molecule from necrotic cells (37) to signal tissue injury

and initiate inflammatory responses through binding to

receptor for advanced glycation end products (RAGE), TLR2,

or TLR4 (31, 38, 39). It is a terminal mediator of sepsis (40)

and an earlier inducer of hepatic injury during ischemia/

reperfusion in a TLR4-dependent manner (32).

Irradiation of EG7 and TS/A cells or doxorubicin treatment

of CT26 and MCA205 cells caused the late release of HMGB1

(by 18 h) and yet failed to provoke the release or surface

exposure of HSPs, b-defensin 2, or fibronectin (25). HMGB1

secretion into the supernatant of dying cells was associated

with the reduction of its nuclear expression and its appearance

in chromatin-free vesicles (Fig. 4A). Acetylcholine and the

cholinergic agonist nicotine, by signaling through the a7

nicotinic acetylcholine receptor, inhibited the release of

HMGB1 from human and mouse macrophages in response to

TNFa or endotoxin (40). We showed that the treatment of

tumor cells with X-rays and nicotine could inhibit HMGB1

release from dying tumor cells (Fig. 4A, B). Z-VAD-fmk, which

suppressed apoptotic caspase activation and delayed secondary

necrosis, could also prevent the exodus of HMGB1 from the
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nucleus (Fig. 4A, B). Interference with HMGB1 release, using

either z-VAD-fmk or nicotine, severely impaired the

immunogenicity of cell death in antigen-presentation assays

(Fig. 3C). Similar results were obtained using small interfering

RNA (siRNA) targeting HMGB1 or a neutralizing anti-HMGB1

antibody, which completely abrogated the immunogenicity of

dying tumor cells in all settings (25). Because HMGB1 is

involved in the inflammatory response elicited by dying cells

(32, 37, 40, 41), we further investigated its contribution to

the TLR4-dependent anti-tumor effects. Transfection of

doxorubicin-treated CT26 or MCA205 cells with two

independent specific siRNAs inhibiting HMGB1 failed to

immunize the hosts against a lethal challenge with live tumor

cells (25). As expected from earlier reports (31, 38), we could

confirm the effective binding of HMGB1 to TLR4 in Raw264.7

macrophages (which express TLR4), using immuno-

precipitation with an anti-HMGB1 antibody and blotting with

an anti-TLR4 antibody (25). This result supports the

contention that HMGB1 secreted by dying tumor cells binds

to TLR4 and hence makes it unlikely that another (known or

unknown) TLR4 ligand produced by agonizing tumor cells

would preferentially occupy TLR4 on antigen-presenting cells.

In conclusion, HMGB1 represents (one of) the main DAMPs

that dictates the TLR4-dependent immune response against

dying tumor cells.

Putative role of TLR4 in DCs

We demonstrated that the interaction between HMGB1 and

TLR4 was not required for the phagocytosis of dying tumor

cells by DCs or for DC activation (as defined by enhanced

membrane expression of MHC class II and costimulatory

molecules as well as secretion of TNFa, IL-6, and IL-12p40).

The initial observation that TLR4 can inhibit the lysosome-
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dependent degradation of phagosomes (42) suggested that

Tlr4� /� DCs would degrade dying cells in the lysosomal

compartment instead of presenting their antigens (43). This

assumption prompted us to assess whether TLR4 could be

involved in the processing of exogenous cell-associated

antigens. Indeed, the antigen cross-presentation by Tlr4� /�

DCs could be restored by inhibiting the activity of lysosomes,

either with chloroquine (a lysosomotropic alkaline) or

bafilomycin A1 (a specific inhibitor of the vacuolar adenosine

triphosphatase responsible for lysosomal acidification) (25).

Further corroborating these results, we measured the on-rate

exposure of MHC class I/peptide complexes (Kb/SIINFEKL) on

the surface of DCs (Tlr4� /� or Tlr41/1) pulsed with dying

OVA-transfected TS/A (H-2d) using the specific 25D1.16

antibody (44). The results clearly indicated a markedly

reduced exposure of Kb/SIINFEKL complexes on Tlr4� /� DCs

compared with their Tlr41/1 counterparts, accounting for their

impaired ability to induce T-cell activation (25). Importantly,

treatment of Tlr4� /� DCs with chloroquine restored the

ability of DCs to present Kb/SIINKEKL complexes to normal

levels, while addition of an anti-HMGB1 antibody completely

abrogated the exposure of Kb/SIINFEKL complexes on WT

DCs.

We next examined the possibility of enhanced phagosome-

endosome/lysosome fusion in Tlr4� /� DCs compared with

WT DCs, as demonstrated previously in macrophages (42).

Our data indicated a significant acceleration of the

colocalization of the phagocytic cargo with lysosomes in

TLR4-deficient DCs (25). This finding indicated that in

contrast to WT DCs, Tlr4� /� DCs degrade the antigenic

material from phagocytosed dying tumor cells, via rapid

fusion of the phagosome with the lysosome.

TLR4 as a predictive factor of response to anthracyclines

Two cosegregating single nucleotide polymorphisms (SNPs) of

the human TLR4 gene, namely Asp299Gly (rs4986790) and

Thr399Ile (rs4986791), have been correlated with a

hyporesponsiveness to inhaled lipopolysaccharide (LPS).

Epithelial cells and alveolar macrophages derived from

probands with the Asp299Gly allele exhibited a decreased

response to LPS stimulation in vitro, both in the homozygous

and in the heterozygous state (45). Because amino acid

residues 299 and 399 are situated within the extracellular

domain of TLR4, the impact of these SNPs may be caused by a

decreased recognition of LPS (46). The associations of these

SNPs with the augmented incidence of septic shock during

infections with Gram-negative bacteria have also been reported

(47–49). We speculated that the identification of TLR4

Asp299Gly and Thr399Ile mutations might be important for

individual risk assessment of patients treated by chemotherapy.

We first addressed the impact of the two TLR4 SNPs on

the binding of HMGB1 to TLR4. We performed immuno-

precipitation experiments after adding recombinant HMGB1 to

HeLa cells transfected with the normal (Asp299Asp) or the

mutated (Asp299Gly) human TLR4 cDNA. The binding of

HMGB1 to the mutant TLR4 allele was reduced, as compared

with the normal TLR4 (Fig. 5). Importantly, mutant TLR4 also

reduced the interaction of endogenous TLR4 with HMGB1

(HeLa cells constitutively express a normal TLR4), suggesting

that it acts as a dominant-negative form of TLR4 with respect to

the binding capacity to HMGB1 (25).

Then, we addressed the functional relevance of the

Asp299Gly TLR4 SNP on the capacity of human monocyte-

derived DCs to cross present antigens from dying tumor cells.

As compared with normal DCs, DCs derived from individuals

bearing the variant TLR4 allele exhibited a markedly reduced

capacity for cross-presenting the MART-1 tumor antigen from

dying melanoma cells to a MART-1-specific CTL clone. This

defect in antigen presentation could be restored by addition of

chloroquine. These data have been obtained for two mutated

individuals (25).

We also investigated the clinical relevance of bearing a

variant TLR4 allele for the response to anthracyclines. We

carried out the genotyping of TLR4 in a cohort of breast cancer

patients. TLR4 Asp299Gly genotypes were detected by a single

tube polymerase chain reaction (PCR) based on exonuclease

degradation of dual-labeled allele-specific oligonucleotides. A

cohort of 280 female breast cancer patients presenting with

lymph node involvement and treated by surgery, followed by

adjuvant irradiation and anthracycline-based chemotherapy

were genotyped for TLR4 and analyzed in terms of

progression-free survival after therapy. The frequency of

Asp299Gly and Gly299Gly TLR4 germline polymorphisms was

17.1% and 0.7%, respectively. Patients who exhibited a variant

TLR4 allele did not differ from patients displaying the normal

TLR4 allele for all classical prognostic factors (age, pathological

tumor size, lymph node involvement, tumor grade, hormone

receptors, and median follow-up). The metastasis-free survival

was significantly longer in the cohort carrying the normal allele

of TLR4 (50% of relapse in mutated versus 37.4% in non-

mutated patients at 10 years, Log-rank test, P = 0.03). Similar

results were obtained by analyzing the second missense

mutation (Thr399Ile) that co-segregates with the Asp299Gly

substitution. To underscore the specificity of our clinical

findings, we analyzed the impact of irrelevant SNPs affecting a
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TLR4 intron and the 50 untranslated region (TLR4 mutation

rs1927911 and rs10759932, respectively) (50). Moreover, we

studied a polymorphism that affects CD14 (which interacts with

TLR4 to build up the multi-composite LPS receptor). None of

these SNPs influenced the disease-free survival of breast cancer

patients (Fig. 6). Hence, a mutation of TLR4 that affects its binding

to HMGB1 may influence the immunological component of

anthracycline-based chemotherapy in human cancer.

Conclusions

The concept of tumor immunosurveillance originally emerged

during the 20th century with Burnet’s assumption (51) that the

immune system participates in the eradication of tumor cells.

Critical immune players involved in immunosurveillance, such

as T, B, NK, NKT cells, and more recently IFN-producing killer

DCs, have been identified (52–56). The findings discussed in

this review unravel several novel facets of the concept of tumor

immunosurveillance (57).

First, we challenge the view shared by most oncologists that

cytotoxic drugs currently used in the clinical armamentarium

only act on the tumor cell compartment. Indeed, we demonstrate

in four tumor models constrained by three independent

therapeutic regimens that cytotoxic compounds also stimulate

the host defense against cancer for the optimal control of tumor

progression. Second, this cooperation between direct and

immune-biased antitumor effects is based on the contention

that tumor cell death induced by chemotherapy or ionizing

radiation promotes potent tumor-specific cognate immune

responses (58, 59). Third, while it was reported that injured or

distressed tissues could tune host antigen-presenting cells to elicit

T-cell activation (60), our data show that cytotoxic agents could

mediate such immunogenic tissue damage. Fourth, the DAMP

released by dying tumor cells on chemotherapy or radiotherapy-

induced distress has been identified as HMGB1, a nuclear factor

that can be released passively during necrosis and actively during

late-stage apoptosis. Fifth, while HMGB1 can bind to a variety of

different receptors, TLR4 is the only relevant signaling pathway

accounting for the immunogenicity of chemotherapy and

radiotherapy. Sixth, TLR4 harbored on DCs does not promote

DC maturation (accounting for T-cell cross-priming) but rather

controls the fusion between phagosomes and lysosomes that

causes antigen degradation, deviating the antigen from the

processing/presentation compartment. Finally, we provide

evidence that the TLR4 SNP Asp299Gly compromises the

binding of HMGB1 to the extracellular domain of the receptor,

compromising DC-mediated cross-presentation in patients

bearing the mutant allele. The latter experimental finding may

explain why this polymorphism predicts a decreased response to

anthracyclines in breast cancer patients.

Our data do not reveal all of the mechanisms accounting for

the immunogenicity of cell death induced by apoptotic

HeLa cells

IP: TLR4

rHMGB1

Empty
vector

TLR4
Asp299Gly

29 kDa

Transfection 
control

IB: TLR4

TLR4
Asp299Asp

IB: HMGB1

TLR4 cDNA
Asp299Asp (normal)
Asp299Gly (variant)

Asp299Gly + Thr399Ile
Empty vector

Transfection Incubation

PBS
rHMGB1

IP: TLR4

IB: HMGB1

90 kDa

TLR4
Thr399Ile

TLR4
Asp299Gly

+
Thr399Ile

Loading
control

IB: actin

43 kDa
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Fig. 5. The Asp299Gly and Thr399Ile polymorphisms impair high mobility group box 1 protein (HMGB1) binding to Toll-like receptor 4
(TLR4). HeLa cells were transfected with a vector containing the TLR4 Asp299Asp normal cDNA or the TLR4 Asp299Gly mutated cDNA or an empty
vector. Transfectants were incubated in the presence of rHMGB1 for one hour and immunoprecipitation assays using anti-TLR4 antibody (for IP)
followed by anti-HMGB1 antibody for blotting (25) were performed as indicated in the scheme.
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inducers. Indeed, if ecto-calreticulin is a mandatory eat-me signal

(61–63) and HMGB1 is a critical mediator for the TLR4-

dependent processing of exogenous tumor antigens by DCs

(25), we are still missing a third signal that induces DC

maturation. Indeed, recombinant HMGB1 protein, used as a

holoprotein, could not promote the alloreactivity of immature

bone marrow-derived DCs and monocyte-derived DCs in our

hands [although the HMGB1 fragment box B could do so (64)],

and the MyD88-dependent maturation of DCs loaded with dying

tumor cells was not abrogated by the anti-HMGB1 monoclonal

antibody in vitro (our unpublished data). Therefore, additional

components released or expressed by dying tumor cells need to

be identified to delineate the overall pathway of the

immunogenicity of cell death. Following from this issue, the

question of whether ecto-calreticulin and HMGB1 could also

promote the autoreactivity of B and T cells remains open.

The phagosome maturation model (65) proposes that the

antigen and the TLR ligand must be present within the same

particle to be interpreted by the immune system as ‘microbial’

or ‘dangerous.’ Based on this model, it is hard to predict

whether soluble HMGB1 would dictate the immunogenicity

of cells from the immunological self. It remains to be

determined whether (part of) HMGB1 may remain associated

with stressed or dying cells or whether other yet-to-be-

identified TLR ligands come into play. Moreover, the

phagosome maturation model ensures the selection of

‘dominant’ antigens for presentation by MHC class II

molecules; yet, those required for MHC class I presentation

remain to be established.

TLR7, TLR8, and TLR9 were originally defined as receptors

specific for bacterial and viral RNA (66, 67) or DNA (68).

However, more recent studies have provided evidence that

these receptors also detect host RNA, DNA, and DNA-

associated proteins (69, 70). They probably play a role in the

development of systemic autoimmune disorders (71). Tian

et al. (69) recently demonstrated that class A (but not B) CpG-
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containing oligodeoxynucleotides (ODNs) and HMGB1 (this

applies both to the holoprotein and to the B-box containing the

RAGE-binding domain) functionally interact to stimulate

plasmacytoid DCs to produce type 1 IFN and TNFa. CpG-A

ODNs augment the binding of HMGB1 to RAGE. HMGB1–DNA

complexes resulted in the association of RAGE with TLR9. In

addition, HMGB1 was present in the DNA-containing immune

complexes and was essential to trigger autoreactive B cells and

to induce IFIT1 mRNA, a target gene encoding type 1 IFN (69).

Thus, HMGB1 can mediate the activation of TLR9 by DNA-

containing immune complexes through a mechanism

involving RAGE. How such observations can be reconciled to

ours remains elusive. Although we ruled out a role for TLR9 in

the immunogenicity of cell death, we cannot exclude a role for

RAGE at the present stage. Moreover, it remains possible that

HMGB1 might interact with another yet-to-be-discovered

molecule that would then physically interact with TLR4.

Indeed, Tian et al. (69) showed that mammalian HMGB1

failed to bind to a recombinant TLR4-Fc fusion protein,

although it did bind to RAGE-Fc in vitro, in a cell-free system.

Other cytotoxic agents, including chemotherapy regimen or

vascular-disrupting agents (VDA), have been reported to

stimulate immune responses and/or to mediate T-cell-

dependent anti-tumor effects in mice (72–75). Recently,

human in vitro studies demonstrated that myeloma cell death

induced by bortezomib (but not dexamethasone or

irradiation) can be immunogenic, likewise due to the

exposure of HSP90 on the surface of bortezomib-treated

tumor cells (76). HSP90 was detectable on myeloma plasma

membranes by 12 h after treatment and allowed the DC-

mediated T-cell cross presentation in the absence of an

exogenous maturation stimulus (76).

In addition to offering novel conceptual advances, these data

question the validity of certain practices routinely applied in

the management of cancer patients. If an HMGB1/TLR4-

dependent priming does occur in the draining lymph node of

a tumor treated with chemotherapy or radiotherapy, what is the

advantage of local lymph node resection? Does the benefit of

staging the disease (by lymph node resection) outweigh the

abolition of efficient T-cell priming? If the DC-mediated T-cell

activation is initiated as a result of chemotherapy- or

radiotherapy-induced cell death, what is the risk of

prescribing repeated doses of glucocorticoids to combat

nausea and vomiting? If dying tumor cells are cross-presented

by host DCs, should not we consider to privilege neoadjuvant

over adjuvant chemotherapy, i.e. chemotherapy before surgery

rather than after surgery? One could predict that the delivery of

antigens would be more efficient in the former case, where

bulk tumors are treated, rather than in the latter case,

where only occult residual disease is targeted. Lastly, we

should further explore the functional relevance of TLR4 in

the success of chemotherapy. Around 12% of Caucasians carry

the ‘defective’ Asp299Gly TLR4 allele, and a yet-to-be-

determined proportion of individuals present with TLR4

defects at the transcriptional level. A previous report

claimed that monocyte-derived DCs generated from two of 10

patients bearing a head and neck tumor profoundly

downregulated the expression of normal TLR4 receptors (77).

Therefore, manipulations aimed at normalizing functional

TLR4 defects may improve the efficacy of chemotherapy

in these patients. Although lysosomotropic drugs have been

used in a variety of indications including tumors that

overexpress the multidrug resistance (MDR) pump (78, 79),

chloroquine synergized with oxaliplatin (which is not a
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substrate of MDR) in Tlr4� /�mice (25). Moreover, chloro-

quine corrected deficient cross-presentation by TLR4-mutated

mouse bone marrow-derived DCs or human monocyte-

derived DCs (25). This finding underscores the potential of

combining chloroquine with cytotoxic agents for the treatment

of cancer-bearing TLR4-deficient hosts. However, our

unpublished data also point to the potential of TLR3 and

TLR9 ligands in compensating for TLR4 deficiencies in anti-

tumor effects, depending on ionizing radiation (Figs 7 and 8).

Should the predictive role of the Asp299Gly TLR4 SNP for the

response to anthracyclines be confirmed in breast cancer

patients, the challenge will remain to demonstrate

prospectively that the combination of doxorubicine and

chloroquine is beneficial in patients bearing the mutated allele

but not in the cohort carrying the normal allele, independently

of MDR.
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