Overcoming Resistance to EGFR Tyrosine Kinase Inhibitors in EGFR Mutant Lung Cancer

Pamela A. Hershberger, PhD Department of Pharmacology and Therapeutics Oncology for Scientists May 9, 2017

Lung Cancer

- Leading cause of cancer mortality for both men and women in the United States
- More than 220,000 individuals diagnosed annually
- 5 year survival for advanced disease < 15%
- Histologically and molecularly heterogeneous disease
 - contemporary therapy for advanced disease is based on identification & targeting of oncogenic drivers

Histologic and Molecular Subtypes of Non-Small Cell Lung Cancer

Precision Medicine in NSCLC Treatment

- In about 60% of lung adenocarcinomas, a specific oncogenic driver mutation can be identified
- Drugs that target these oncogenic drivers are selectively toxic to malignant cells
- Targeted therapies offer better-tolerated disease modifying treatment options in patient populations defined by relevant oncogene mutations
- Successful implementation requires robust biomarker assays; rapid turn-around time; menu of targeted therapies; access to targeted agents

Precision medicine extends NSCLC survival

Targeted therapy matched to mutations in a tumor extends survival for patients with advanced lung cancer

Mark Kris, MD

EGFR Structure

- Receptors exist on the surface of cells and contain an extracellular, transmembrane, and intracellular domain.
- Each domains is responsible for a different aspect of signaling
 - Extracellular Domain
 - Ligand binding
 - Receptor dimerization
 - Intracellular Domain
 - Tyrosine kinase
 - Regulatory region

*Burgess AW, Cho HS, Eigenbrot C, et al. Mol Cell. 2003;12:541-542

EGFR downstream signaling

EGFR Gene Mutations in NSCLC

- Activating EGFR gene mutations identified in 15% of lung adenocarcinoma cases in the United States
 - higher rate of mutation in Japan, Korea
- TK domain commonly mutated
 - L858R point mutation in exon 21
 - Exon 19 deletion (near ATP binding site)
 - Mutations stabilize the "activated" conformation of the TK domain
- In mouse models, presence of mutated EGFR is necessary and sufficient to induce lung tumors

EGFR Tyrosine Kinase Inhibitors for Treatment of Advanced EGFR Mutant NSCLC

Osimertinib

- Oral, irreversible inhibitor selective for EGFR sensitizing mutations and the EGFR T790M resistance mutation
- Wild-type sparing (does not bind wildtype EGFR)
- Osimertinib demonstrates efficacy in Phase II AURA2 trial
 - When delivered after EGFR TKI failure, osimertinib has an objective response rate of 70%
 - Complete responses were observed in 3% of patients
 - Responses were durable, average of 11.4 months
- FDA approved for patients with EGFR T790M mutant NSCLC who have progressed on or after EGFR TKI therapy

The Question

- Pre-clinical and epidemiologic studies support a role for vitamin D3 metabolites in reducing lung cancer risk
- Impact of vitamin D3 metabolites on lung cancer survival is variably reported
 - TY Cheng and ML Neuhouser (2012) Cancer Causes Control 23:1557
 - no overall association between 25(OH)D₃ and lung cancer mortality in NHANESIII cohort
 - lifetime never smokers with lung cancer significantly less likely to die from their disease if 25(OH)D₃ ≥44 nmol/L vs. <44 nmol/L
- Might lung cancers that develop in never smokers be preferentially affected by vitamin D3 metabolites?

Vitamin D Metabolism and Signaling Pathway

diet

Acknowledgements

Alissa Verone, PhD

Sue Shoemaker

Tatiana Shaurova

Collaborators: Laurie Rich, PhD Mukund Seshadri, DDS PhD Kristopher Atwood, PhD Carl Morrison MD, DVM RPCI Pathology Resource Network RPCI Genomics Shared Resource Funding Sources: R01 CA132844 (PAH) R01 DE024595 (MS) The RPCI Alliance Foundation

NSCLC cells with *EGFR* mutations are preferentially sensitive to $1,25(OH)_2D_3$

VDR is expressed in human lung tumors that harbor activating *EGFR* mutations

EGFR TKI activity

EGFR mt	RR (%)	OS (mo)
del746-750	70-100	26-30
L858R	20-67	8-17

EGFR TKI resistant

Effect of modulating dietary vitamin D3 intake on growth of *EGFR* mutant NSCLC xenografts

Dietary vitamin D3 intake modifies growth of HCC827 human lung tumor xenografts

Growth rate (d13-d27)

Comparison	P-value
100 IU vs switch	0.011
10,000 IU vs switch	0.359
100 IU vs 10,000 IU	0.001

Fold-increase in tumor volume

Diet Group	Final TV/Initial TV
100 IU vitamin D3/kg	16
Switch diet	7
10,000 IU vitamin D3/kg	3

Fraction below 100 mm³ at study termination

Diet Group	Fraction
100 IU vitamin D3/kg	2/10
Switch diet	5/10
10,000 IU vitamin D3/kg	7/10

AR Verone-Boyle, et al. (2016) Oncotarget 7:995