Hold your breath! Utilizing Deep inspiration breath hold (DIBH) and Volumetric modulated arc therapy (VMAT) for the treatment of Esophageal carcinoma

Joseph E. Pagano, B.S., R.T (T)
Roswell Park Cancer Institute
outline

- SEER Statistics at a Glance
- Current Strategies
- Radiotherapy Planning, Organs at risk (OAR)
- Clinical implementation, the role of the radiation therapist
- Challenges
SEER Stats at a glance

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated New Cases in 2015</td>
<td>16,980</td>
</tr>
<tr>
<td>% of All New Cancer Cases</td>
<td>1.0%</td>
</tr>
<tr>
<td>Estimated Deaths in 2015</td>
<td>15,590</td>
</tr>
<tr>
<td>% of All Cancer Deaths</td>
<td>2.6%</td>
</tr>
</tbody>
</table>

New Cases vs Deaths

![Graph showing New Cases and Deaths over Years](#)

Percent Surviving 5 Years

17.9%

2005–2011

Percent of Cases & 5-Year Relative Survival by Stage at Diagnosis: Esophageal Cancer

- Localized (21%) Confined to Primary Site
- Regional (31%) Spread to Regional Lymph Nodes
- Distant (38%) Cancer Has Metastasized
- Unknown (11%) Unstaged

Percent of Cases by Stage

5-Year Relative Survival

SEER 18 2005-2011, All Races, Both Sexes by SEER Summary Stage 2000
Most frequently diagnosed among people aged 65-74.

More prevalent in Men than women 4:1

Commonly associated with heavy alcohol use and tobacco use.

GERD

Barrett’s Esophagus
New Cases, Deaths and 5-Year Relative Survival

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5-Year Relative Survival</td>
<td>4.0%</td>
<td>5.6%</td>
<td>8.6%</td>
<td>10.0%</td>
<td>11.6%</td>
<td>17.4%</td>
<td>17.1%</td>
<td>21.6%</td>
</tr>
</tbody>
</table>

Anatomy/ Histology

- Squamous Cell Carcinoma (SCC)
 - Cervical/upper thoracic
 - Developing world

- Adenocarcinoma
 - Lower thoracic/ EGJ
 - Shift from SSC to AC in the U.S.
Epidemiology/ Histology

White Males

White Females

Esophageal Cancer by Histology
- Total
- Adenocarcinoma
- Squamous
- Cell Carcinoma
- Other and Unknown

Rate per 100,000 person-years

1980 1990 2000

1980 1990 2000
The importance of modern radiation therapy approaches
Current treatment strategies

- Surgery
- Radiation
- Chemotherapy

How to effectively utilize all three modalities to produce better overall survival?
Multidisciplinary approach

- RTOG 85-01 phase III trial
- INT 0123 (RTOG 94-05) phase III trial
- CROSS group phase III Trial

RTOG 85-01
Chemoradiotherapy of locally advanced esophageal cancer

- Squamous cell or adenocarcinoma of the esophagus
- T1-3 N0-1 M0.

<table>
<thead>
<tr>
<th>Concurrent Chemoradiation</th>
<th>RT alone</th>
</tr>
</thead>
<tbody>
<tr>
<td>50Gy + 4 cycles of fluorouracil and cisplatin</td>
<td>64 Gy/32 Fxs over 6.4 weeks</td>
</tr>
</tbody>
</table>

5 Year overall survival

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>27%</td>
<td>0%</td>
</tr>
</tbody>
</table>

INT 0123 (RTOG 94-05)

- Follow-up trial to RTOG 85-01
- 5-FU + cisplatin + radiation (64.8 Gy or 50.4 Gy)
- 218 patients, T1-4 N0-1 M0

<table>
<thead>
<tr>
<th>Results</th>
<th>High Dose 64.8 Gy</th>
<th>Low Dose 50.4Gy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median survival</td>
<td>13.0 months</td>
<td>18.1 months</td>
</tr>
<tr>
<td>2 year survival</td>
<td>31%</td>
<td>40%</td>
</tr>
<tr>
<td>Local failure</td>
<td>56%</td>
<td>52%</td>
</tr>
</tbody>
</table>
Patients with resectable tumors randomly assigned to surgery alone or Chemoradiotherapy followed by surgery

Carboplatin and paclitaxel for 5 weeks + radiation therapy (41.4 Gy), followed by surgery

<table>
<thead>
<tr>
<th>Results</th>
<th>Chemoradiotherapy + Surgery</th>
<th>Surgery Alone</th>
</tr>
</thead>
<tbody>
<tr>
<td>R0 Resection</td>
<td>92%</td>
<td>69%</td>
</tr>
<tr>
<td>Path CR</td>
<td>19%</td>
<td></td>
</tr>
<tr>
<td>Median Survival</td>
<td>49.4 months</td>
<td>24.0 months</td>
</tr>
<tr>
<td>5 year over survival</td>
<td>47%</td>
<td>34%</td>
</tr>
</tbody>
</table>
Multidisciplinary approach

We have established:

- Chemoradiation as the conventional nonsurgical treatment for esophageal cancer.
- Higher doses of radiation therapy do not offer a loco/regional control or survival advantage, **Controversial?!?!**
- Preoperative Chemoradiation followed by surgery has been found to be beneficial for patients with resectable esophageal cancer.

Radiation Dose Guidelines
National Comprehensive Cancer Network (NCCN)

Preoperative

- 41.4 – **50.4** Gy (1.8 – 2.0 Gy/day)

Postoperative

- 45 - **50.4** Gy (1.8 – 2.0 Gy/day)

Definitive

- 50 – **50.4** Gy (1.8 – 2.0/day)

** Higher dose (60-66 Gy) may be appropriate for cervical esophagus where surgery is not planned, but no randomized evidence to support this over 50-50.4 Gy

Radiotherapy for Palliative Care

Table: Radiation vs. Chemoradiotherapy

<table>
<thead>
<tr>
<th></th>
<th>Radiation</th>
<th>Chemoradiotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Survival</td>
<td>203 days</td>
<td>210 days</td>
</tr>
<tr>
<td>Dysphagia response</td>
<td>67%</td>
<td>74%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increased GI toxicity</td>
</tr>
</tbody>
</table>

- Improved dysphagia!
- RT or CRT over Stent placement

Best Practice in Advanced Esophageal Cancer: A Report on Trans-Tasman Radiation Oncology Group TROG 03.01 and NCIC CTG ES.2 Multinational Phase 3 Study in Advanced Esophageal Cancer (OC) Comparing Quality of Life (QOL) and Palliation of Dysphagia in Pat
Review

Resectable Cancer

- pre-operative concurrent chemo-radiotherapy
- Postoperative radiotherapy – in positive cut margins, nodal positivity and presence of residual disease (Not talked about but a possibility)

Un-resectable cancer

- Concurrent chemo-radiotherapy

Advanced & metastatic cancer

- Palliative radiotherapy
RT plays an important role in the treatment of Esophageal cancer!
Esophageal Cancer

Percent Surviving 5 Years

17.9%

2005-2011

Percent of Cases by Stage

- Localized (21%) Confined to Primary Site
- Regional (31%) Spread to Regional Lymph Nodes
- Distant (38%) Cancer Has Metastasized
- Unknown (11%) Unstaged
The Goal of modern Radiation Therapy

Gross Tumor Volume definition (PET-CT)
Inter-fraction motion (IGRT)
Intra-fraction motion (Respiratory-Gating)
Precise Dose Delivery to the PTV (IMRT/VMAT)

Minimize post-treatment complications
Reduce radiotherapy-related toxicity
Improve overall clinical results!!!
RT planning process
Defining the Tumor Volume?

- Pre-treatment diagnostic studies
 - CT scans
 - Barium swallow
 - **Endoscopic ultrasound (EUS)**
 - Endoscopy reports
 - PET or PET/CT scans
PET/CT based planning?

- Retrospective study by Gondi et. al.
- PET/CT based targets volumes compared to CT only-based target volumes in 16 patients
- 10 cases found the addition of the PET to the planning process led to a reduction of the GTV!
Improved GTV definition and involved regional lymph nodes

https://www.med-ed.virginia.edu/courses/rad/PETCT/Eosophageal.html
Target Volume guidelines form the NCCN

- Gross Tumor Volume (GTV) = primary tumor and involved regional lymph nodes*

- Clinical Tumor Volume (CTV) = GTV + 3-4cm superior and inferior and 1cm radial expansion along the esophagus.

Nodal CTV = GTV + 0.5 to 1.5cm expansion of the nodal GTV

- Planning Tumor Volume (PTV) = GTV + 0.5 to 1cm expansion

CTV coverage of elective nodal regions

- **Cervical** Esophagus: supraclavicular and possible cervical nodes
- **Proximal** third: supraclavicular and para-esophageal nodal chains
- **Middle** third: para-esophageal nodes
- **Distal** third and **GE Junction**: para-esophageal, lesser curvature, and celiac axis nodal regions

The Goal of modern Radiation Therapy

<table>
<thead>
<tr>
<th>Gross Tumor Volume definition (PET-CT & Margins)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{Inter-fraction motion}</td>
</tr>
<tr>
<td>Intra-fraction motion</td>
</tr>
<tr>
<td>Precise Dose Delivery to the PTV</td>
</tr>
</tbody>
</table>

Minimize post-treatment complications

- Reduce radiotherapy-related toxicity
- Improve overall clinical results!!!
Inter-fraction motion

- Daily setup errors
- Image-guided radiotherapy (IGRT)
- Daily KV/KV match
- Cone-beam CT?
Inter-fraction motion

advanced adenocarcinoma of the lower esophagus

heart

left lung

cancer

right lung

aorta
The Goal of modern Radiation Therapy

<table>
<thead>
<tr>
<th>Gross Tumor Volume definition (PET-CT & Margins)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inter-fraction motion (IGRT)</td>
</tr>
<tr>
<td>Intra-fraction motion</td>
</tr>
<tr>
<td>Precise Dose Delivery to the PTV</td>
</tr>
</tbody>
</table>

Minimize post-treatment complications
- Reduce radiotherapy-related toxicity
- Improve overall clinical results!!!
Intra-fraction motion

- Deep Inspiration Breath Hold (DIBH)
- Lung & breast cancer
- Account for Respiratory and cardiac cycles
- Reduce tumor movement

- Improve Internal Target volumes
- Reduce Surrounding tissue irradiation (Lungs and Heart)
Deep Inspiration breath Hold (DIBH)

- Normal Tissue Sparing (Heart & Lung)
- Improved Internal Target Volume
Organs at risk (OARs)

- **Heart** - 1/3 of heart < 40 Gy
- **Lung**
- **Spinal cord** - Max 45 Gy
- **Liver** - 60% of the liver < 30 Gy
- **Kidneys** - 2/3 of one kidney < 20 Gy
- **Stomach**

Distal Esophagus and GE Junction
Lung

- Percent of lung volume receiving 20 Gy (V20) < 25%
- Total Lung mean dose
Strong correlation between parameter V20 and the incidence of grade 2 pneumonitis

Clinical dose–volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC)

Graham et al
The Goal of modern Radiation Therapy

- Minimize post-treatment complications
- Reduce radiotherapy-related toxicity
- Improve overall clinical results!!!

<table>
<thead>
<tr>
<th>Gross Tumor Volume definition (PET-CT & Margins)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inter-fraction motion (IGRT)</td>
</tr>
<tr>
<td>Intra-fraction motion (Respiratory-Gating)</td>
</tr>
<tr>
<td>Precise Dose Delivery to the PTV</td>
</tr>
</tbody>
</table>
Precise Dose Delivery to the PTV

- 3-D Conformal Radiation Therapy
- Intensity-Modulated Radiation therapy (IMRT)
- Volumetric Modulated Arc Therapy (VMAT)

All three modalities get the job done but at what cost?
Comparative study by Wu. et al.
VMAT combined with DIBH

- Effectively reduce Lung Dose (V20)
- Shorter Treatment time
- Improved target accuracy
The Goal of modern Radiation Therapy

Gross Tumor Volume definition (PET-CT & Margins)
Inter-fraction motion (IGRT)
Intra-fraction motion (Respiratory-Gating)
Precise Dose Delivery to the PTV (VMAT)

Minimize post-treatment complications
Reduce radiotherapy-related toxicity
Improve overall clinical results!!!
Deep Inspiration Breath-hold (DIBH) and Volumetric Modulated Arc Therapy (VMAT) In Action!
Clinical implementation

- Patient Selection
- Simulation
- Treatment planning
- On treatment
Patient selection

- patient’s performance status
- stage and extent of the disease
- histology
- and location of the primary tumor.
Simulation

- GE Lightspeed CT simulator scan is obtained.

Patient positioning

- Supine
- Arms above head
- Oral contrast administered (when possible)**
Simulation

- RPM gating system is utilized to capture a breath-hold scan
- Free breath scan is also capture (Setup purposes)
- Staff present during SIM
 - SIM Therapist
 - Radiation Oncologist
 - Physicist
RT planning process

- Images are imported into the treatment planning computer
RT planning process

- VMAT with DIBH
- 2 Arcs
- Dose constraints entered for inverse planning
- Arcs consist of 130 control points
 - Arc 1 - 181 to 178
 - Arc 2 – 179 to 180
Radiation Technique

Real-time Position Management™ (RPM) system

Gated RapidArc radiotherapy
The role of the radiation therapist - SIM

- Initial coaching of the patient for the deep inspiration breath hold technique
- Easing anxiety
The role of the radiation therapist – On Treatment

- 10 – 14 days from SIM to start of Treatment
- Week 1 = Learning Curve
- Week 2-3 = patient comfortable with process
- Week 4-5 = side effects/ patient health
Treatment delivery Time

- Patient setup (3-4 minutes)
- KV/KV match (3-4 minutes)
- 2 Arcs (patient specific)
Treatment delivery Time

2 Arcs

<table>
<thead>
<tr>
<th>Patient</th>
<th>Arc duration</th>
<th>Number of breaks</th>
<th>Breath hold time</th>
<th>Rest time</th>
<th>2 arcs overall time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>2 min 6 secs</td>
<td>2</td>
<td>26 secs</td>
<td>24 secs</td>
<td>7 min</td>
</tr>
<tr>
<td>Below average</td>
<td>4 min 18 secs</td>
<td>6</td>
<td>10-17 secs</td>
<td>30 secs</td>
<td>12 min</td>
</tr>
<tr>
<td>Outlier</td>
<td>1min 14 secs</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>4 min</td>
</tr>
</tbody>
</table>
Challenges

- Lung complication (COPD)
- Anxiety, nervous
- Degrading health of the patient during treatment course
- Language barrier
- Hearing
Supportive Services during RT

• Assess tolerability of RT before SIM
• Avoid treatment interruptions or dose reductions
• Manage acute toxicities
• Catch it before it becomes an issue!
• It takes a Team!

Supportive care during RT

- On treatment visit once a week (patient specific)
 - Vitals, weight, blood counts

- Prophylactic Antiemetic

- Antacid and antidiarrheal as needed

- Adequate Enteral and/or IV hydration

- Caloric intake of at least 2000 kcal/day

- Feeding tube (based on weight loss from onset of symptoms to diagnosis)
 - Grade 3-4 dysphagia/ <1500kcal/day

- Nutritional services (as needed)

Future Studies

- Dose escalation for un-resectable disease due to high infield (GTV) failure rate
- Protons
- Systemic therapies
 - HER-2 targeting therapy
Question