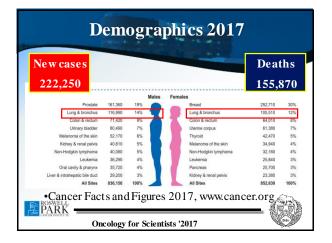
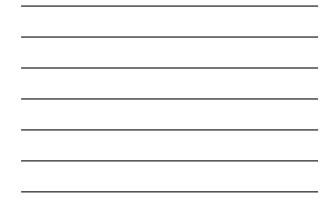

History and Risk Factors

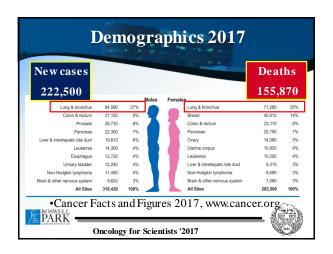
- Typically Males in 6th or 7th Decade – Prognosis worse if presents < 50
- High Risk Occupations/Activities
 - Uranium Miner -- especially smokers
 - Radon (other miners) 1.5 4x / 100 months
 21,000 lung cancer deaths per year
 - Chlormethyl ether workers
 - Cigarette Smoking, benzopyrene
 - Asbestos exposure- synergistic with smoking

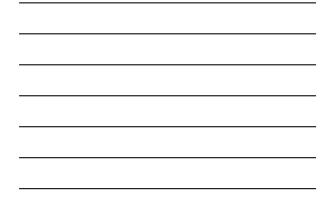
PARK -

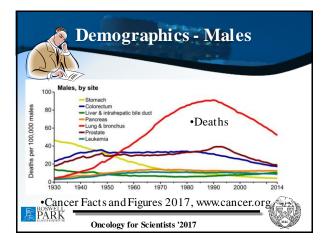
Oncology for Scientists '2017

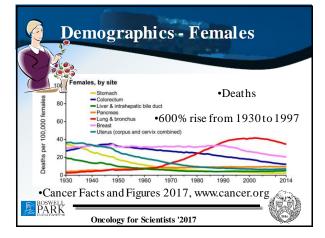

- -

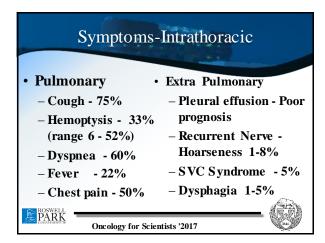


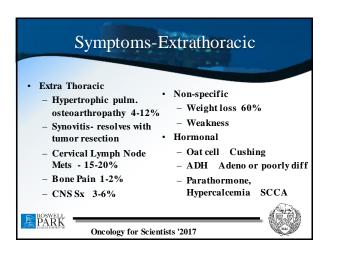


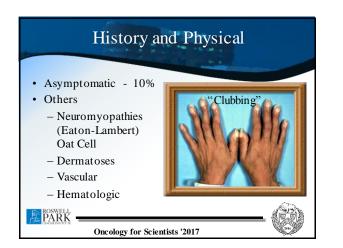


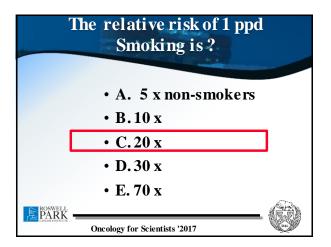


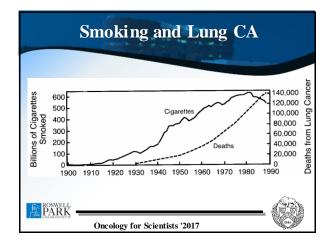


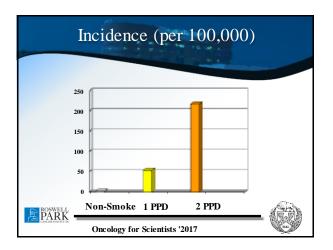


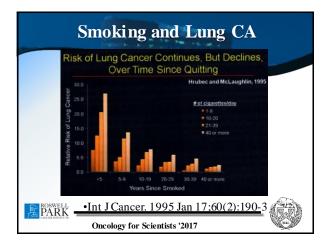


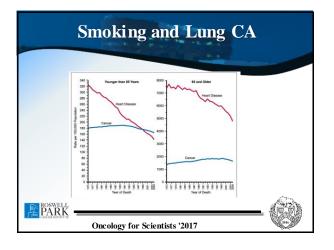


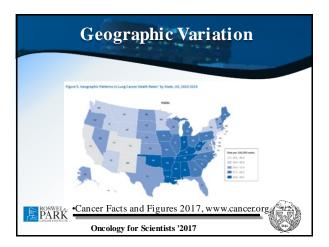


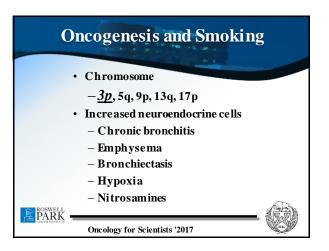


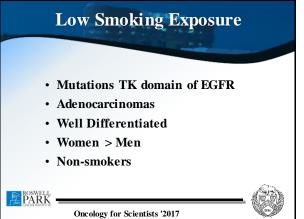


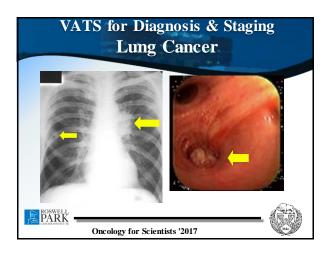


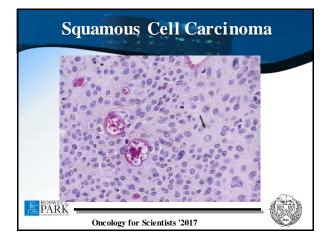


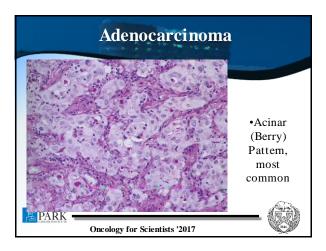




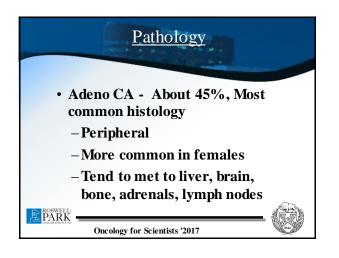


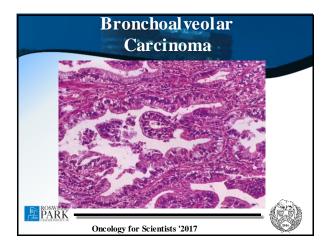


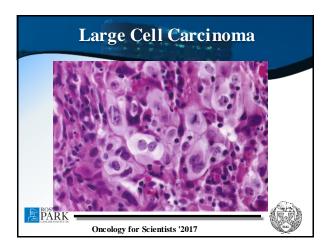


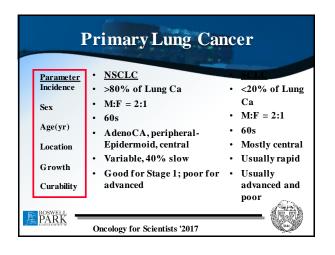


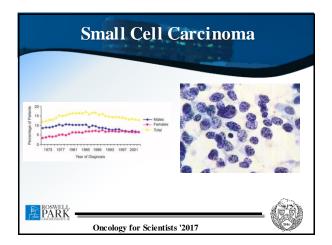
Pathology

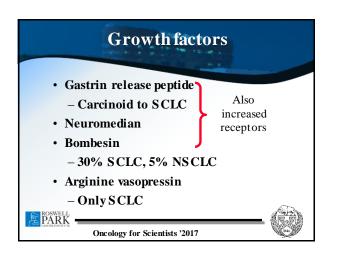

- SCCA about 40%, formally most common
 - Prolonged smoking
 - Central 2/3
 - Frequent mets to hilar, mediastinal, and supraclavicular lymph nodes
 - Less frequently to brain/bone than adeno
 - Tend to be large

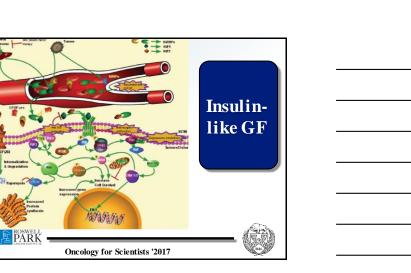

PARK -





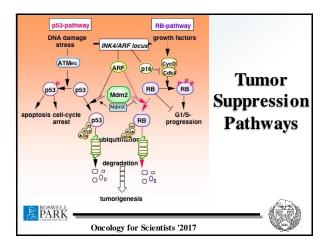




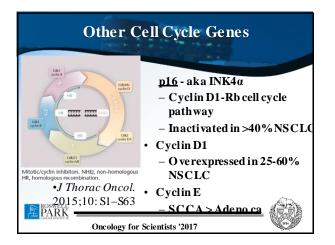


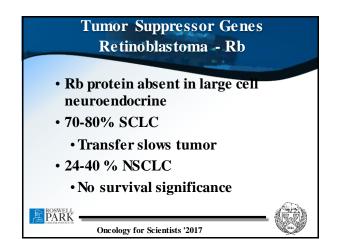


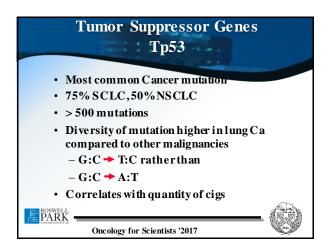
Oncogenes, -myc

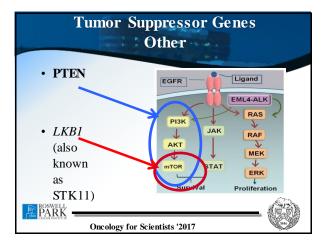

• c-,n-,l-

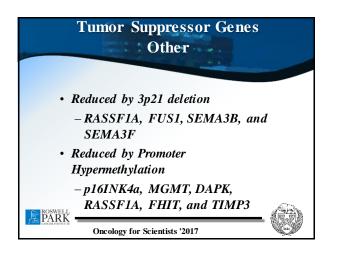
PARK -

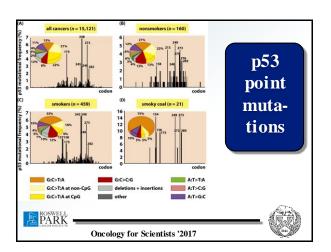

- Common in 20-25% SCLC
- only 10% c-myc NSCLC
- Worse survival
- Can be a mosiac in same tumor

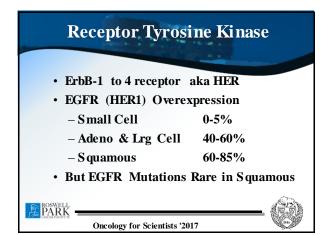


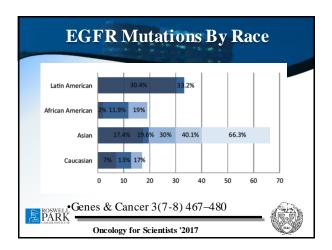


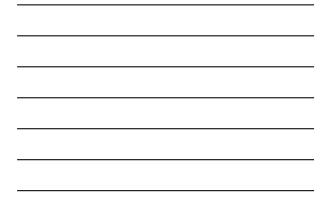


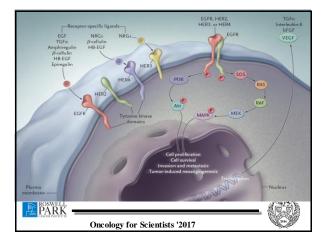


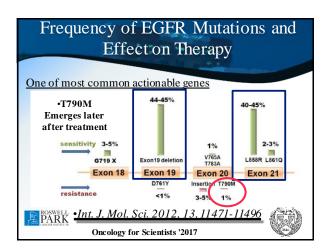




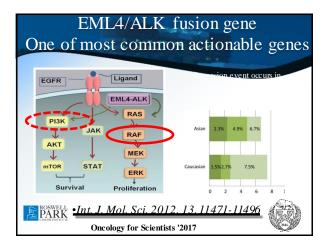


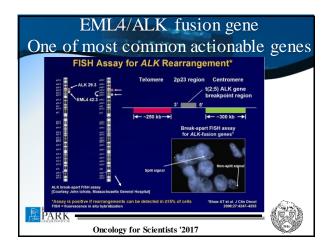


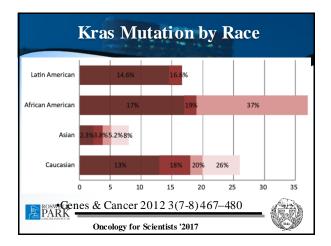


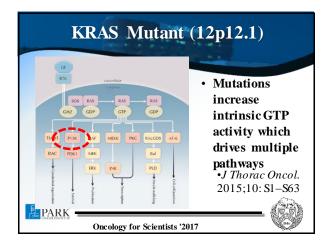


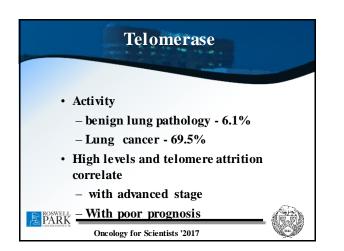
EGFR Mutations in Asian Never smoker with Adenocarcinoma

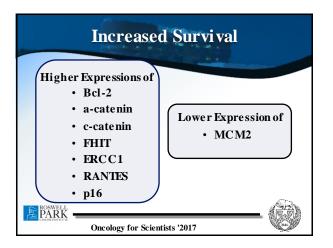


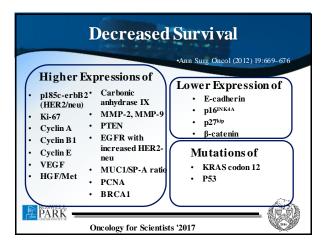


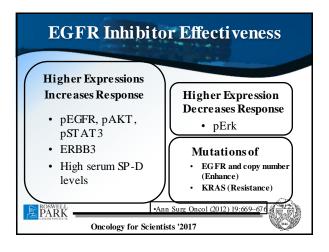




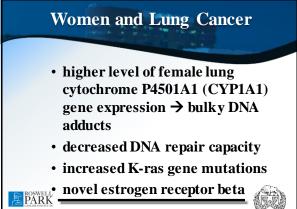

Oncogenes, k-ras				
 h-, k-, n- k most common 90% mutation in 20% NS CLC 25-40% adenoca 9% S quamous 0% S CLC 	 Reduced survival Smoking increases k-ras Precedes mets <u>Blocks EGFR</u> therapy <u>Rare to occur with</u> <u>EGFR mutation</u> 			
Oncology for Scientists '2017				

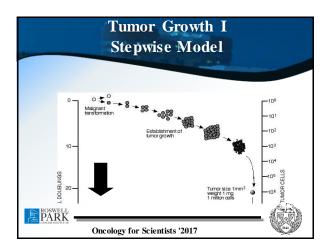




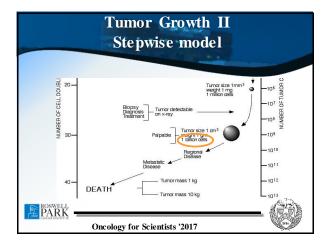


Lung Chemotherapy Predictors if Increased						
	Sensitivity/ Benefit	Chemotherapy	Resistance			
	DYRK2	Cisplatin	ERCC1, BRCA1			
		Etoposide, Bleomycin	BRCA1			
	BRCA1	Paclitaxel	Class III beta tubulin			
	BRCA1, MDR1 polymorphism	Vinorelbine				
RO	hENT1	Gemcitabine	RRM1, dCK			
	Oncology for Scientists '2017					

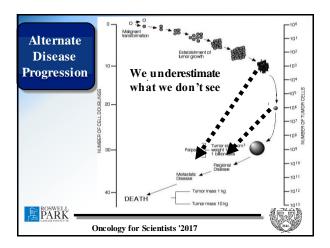


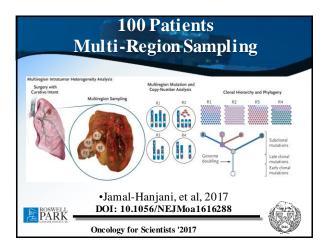


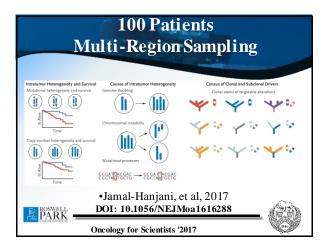
Miscellaneous predictors of survival

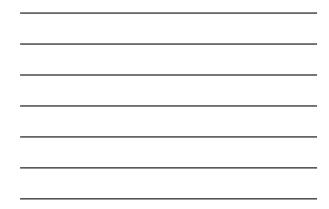

- Microvessel count
- MMP (matrix metalloproteinases)
- Urokinase plasminogen activator
- rtPCR assay for CEA in lymph nodes (upstages in 50%)
- Histologic Patterns
- Radiographic (CT) Image analysis

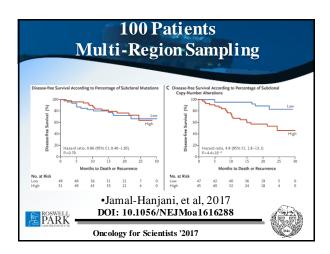
```
PARK
```

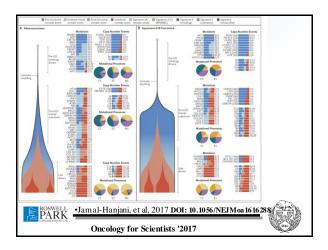


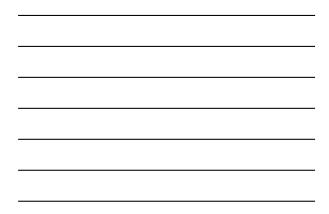


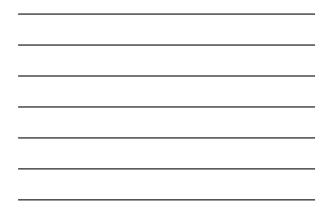


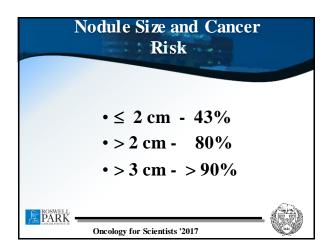


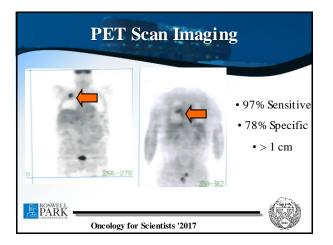




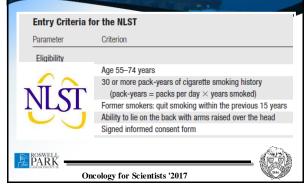


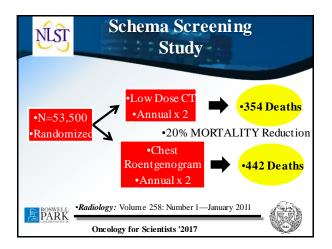




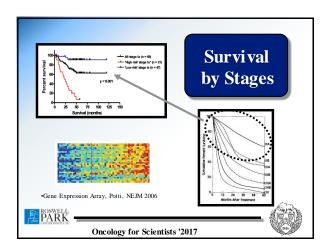


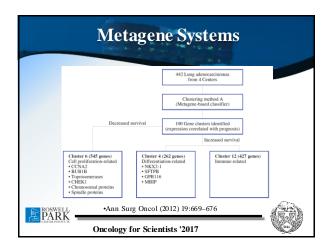
P	ulmonary	Nodule Risk	
		ALL AND AND ALL	
		of malignancy in sol s related to age	ITARY
	Age (yr)	Malignant (%)	
	35-44	15	
	45-49	26	
	5059	41	
	60–69 70–79	50 70	
	70-79	/0	
ROSWELL			(Som)
PARK =			
	Oncology for Scie	ntists '2017	KB46



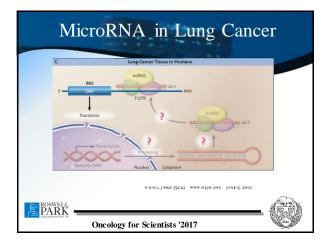


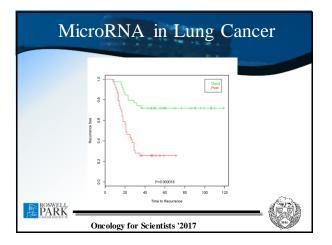
Market Expansion in Lung Nodules

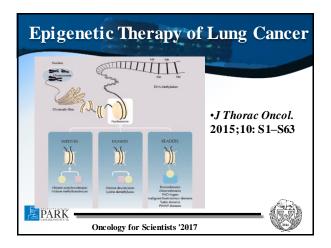


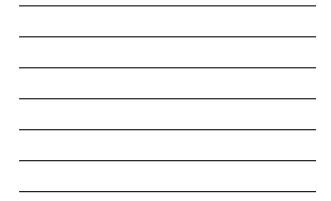


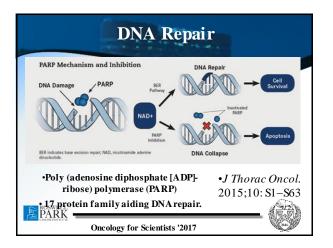
-	Duke Multivariant Model							
	Factorbb	Action	Women	Men & SqCA	Adeno Ca			
	P53	Apoptosis	***		*			
	Factor viii	Angiogenesis	*		*			
	Erb-b2	Growth regulation		*				
	CD-44	Adhesion	*		*			
	Rb	Cell cycle	*			(The		
	Dicology for Scientists '2017							

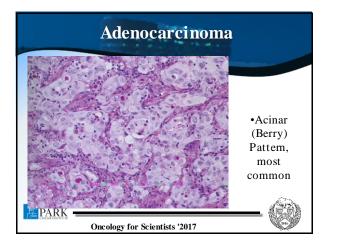


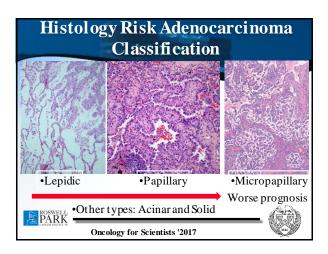


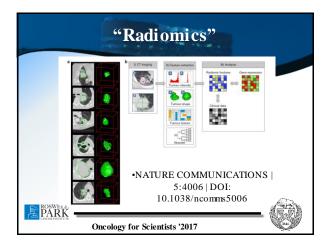


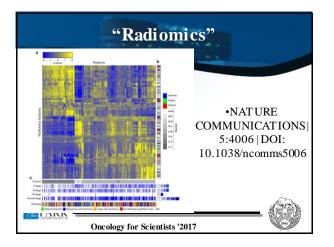


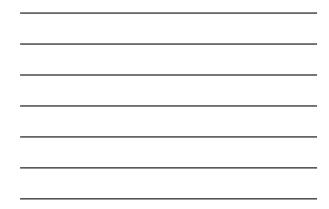


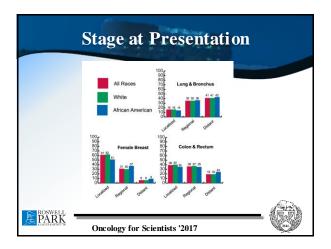


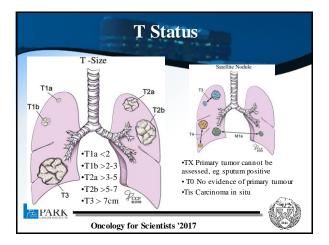


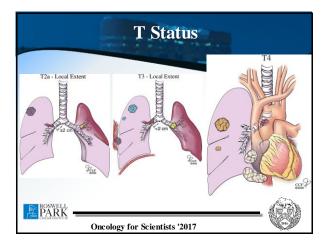




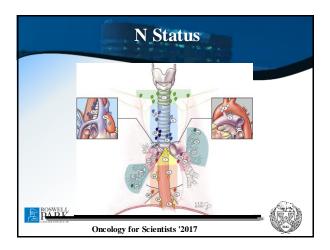


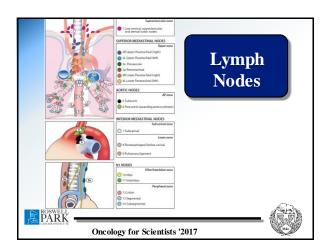


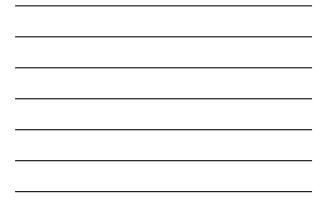






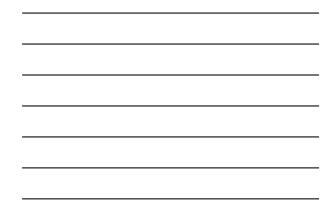


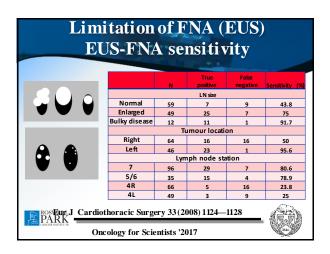


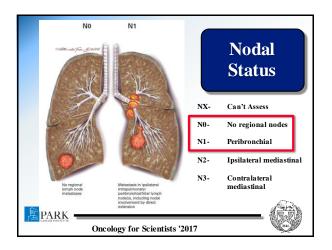


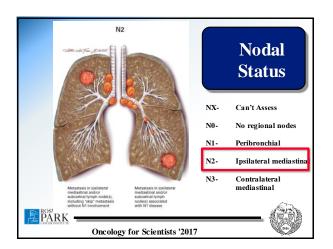




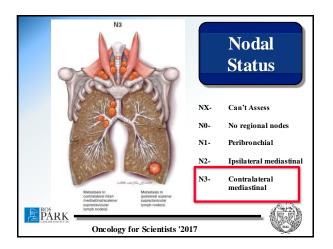


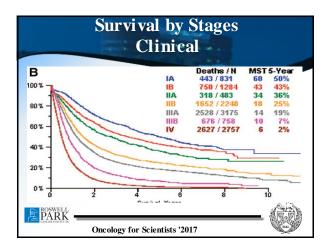


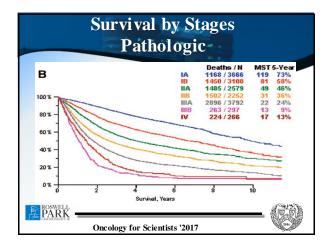




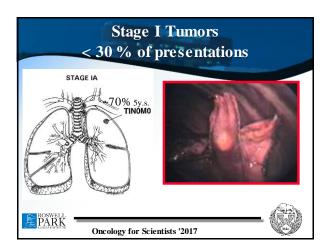


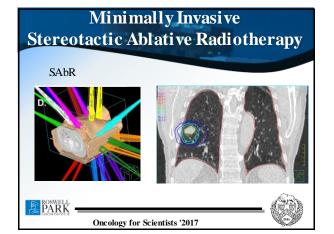


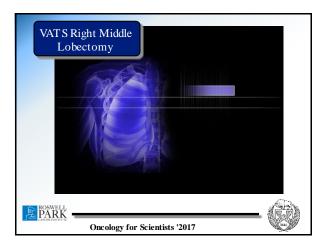


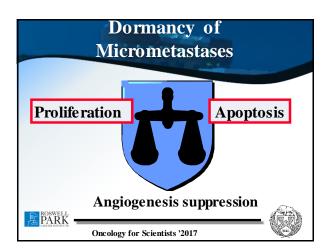




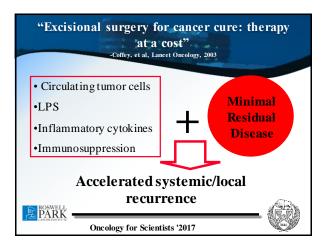






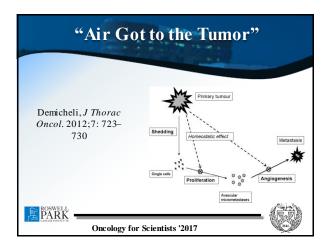


Minimal residual disease in "Early Stage" NSCLC Patients

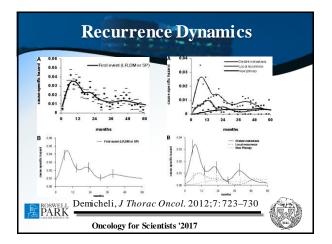

- 38% of patients have a Positive pleural lavage
 - 34 vs 69% 4 yr survival
- 21% of patients positive bone marrow cytokeratin staining
- 10% histologically negative lymph node have positive cytokeratin

PARK -

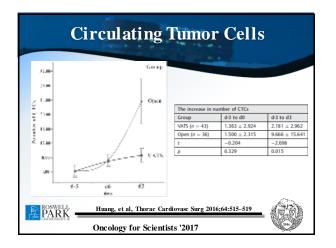
"Excisional surgery for cancer cure: therapy at a cost" Coffey, et al, Lancet Oncology, 2003


• > 100 reports of adverse effects of brood transfusions

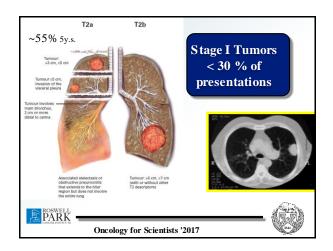
• Multiple surgical trials with disease progression after resection

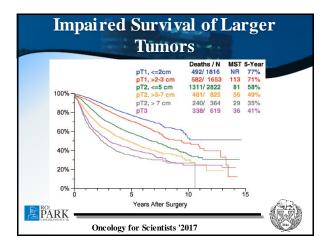

•Lacy, et al trial, Stage III laparoscopic colectomy did better than open colectomy, Lancet 2002.

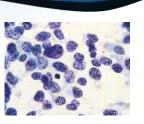
PARK -

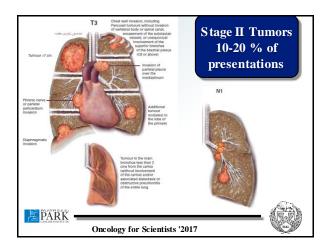




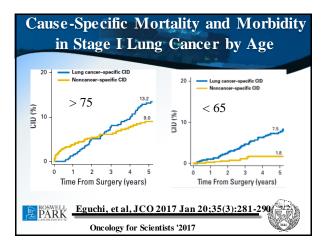




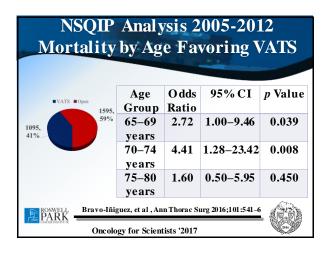


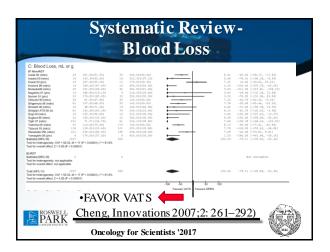

Limited Stage Small Cell Carcinoma

•Generally treated as systemic disease •NCCN guidelines support resection of T1-2, N0,M0 tumors followed by chemo

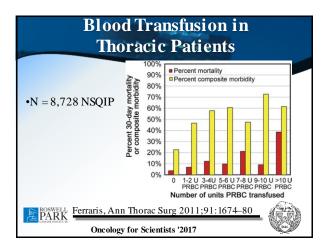


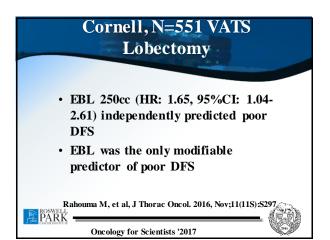
ROSWELL PARK CARGE ASSISTANT

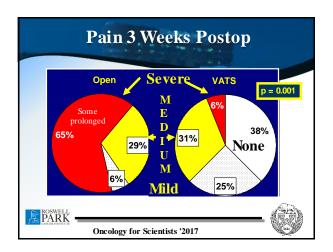

Oncology for Scientists '2017

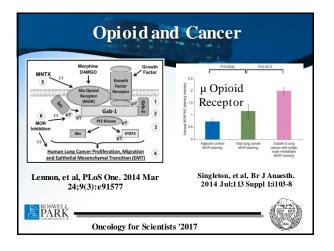


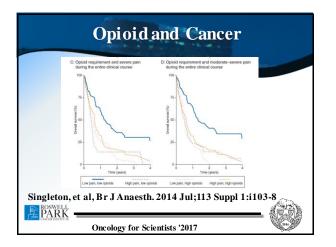


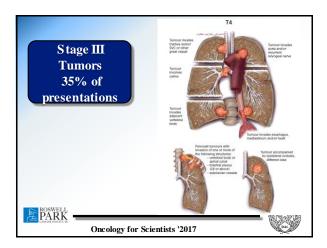


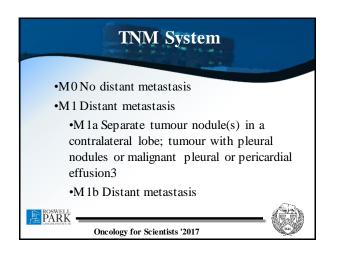


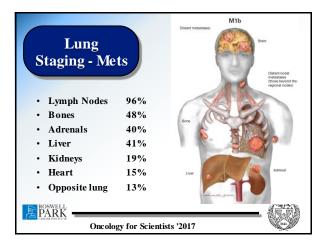


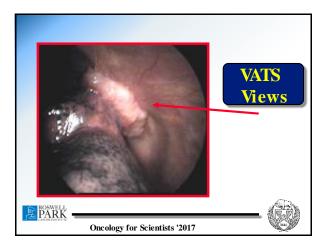


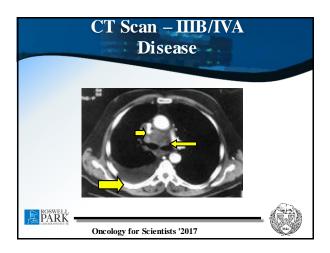








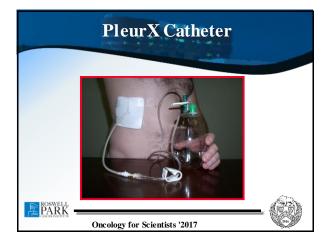


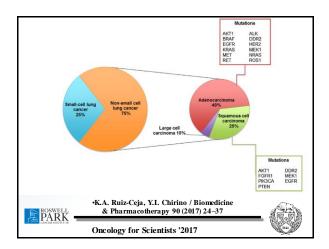


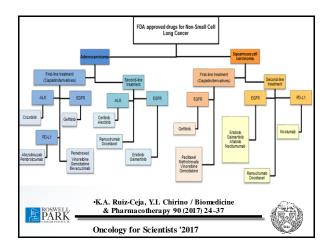
Surgical Contraindications

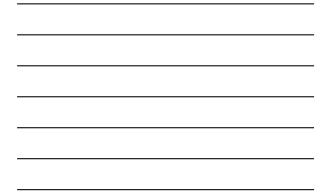
- Inadequate cardiopulmonary reserve
- Malignant pleural effusion
- Recurrent laryngeal nerve paralysis
- Small cell carcinoma
- Contralateral lymph node mets
- Distant mets

Oncology for Scientists '2017

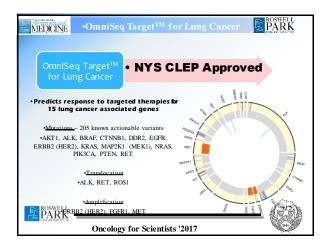




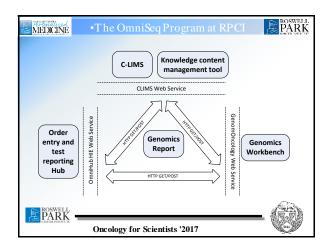


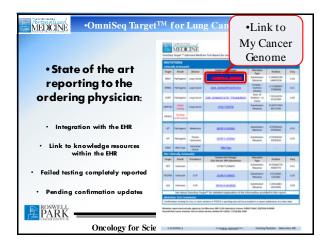




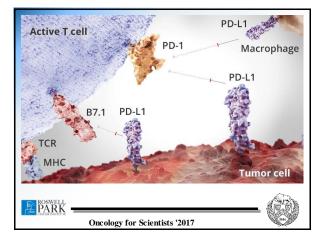


ар (ссі ал) Ве Ве Ве Ве Ве Ве Ве Ве Ве Ве Ве Ве Ве	ENCOLICINAL Renatation (rearrangement) Strearrangement Winstation (Renatation (Renatation) Renatation (Renatation) Renatation (Renatation)	SQUAMOUS PROCA matation PGTR1 amplification FGTR2 matation FGTR2 matation EGTR2 matation DDR2matation	SCIC PIEN loss FCIFEI amplification	erapy	
ROSWELL PARK -					

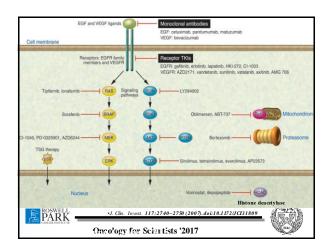


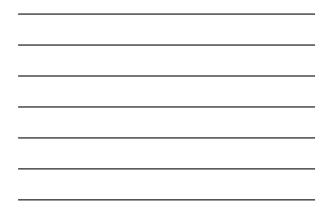


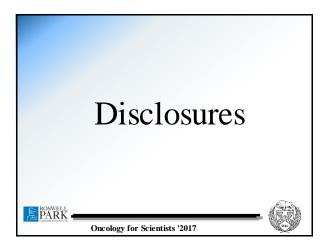
MEDICINE	•OmniSeq Ta	arget TM for L	ung Cancer	PARK	
•Summary Report				Specie	
Oncology for Scientists '2017					



	NYS CLEP Approved							
Clinical Utility • The ability of the test to improve health outcomes relative to the current best alternative.								
OmniSeq Target Marker Panel Jinical Evidence ung Adenocarcinoma								
AKT1	ALK1	BRA F	CTNNB1	DDR2	EGFR	NCCN Consensu:		
ERBB2 ²	FGFR1 ³	GNA11	GNAQ	JAK2	кіт	Drugs Approved in Other Cancer		
KRAS	MAP2K1	MET ³	NRAS	PDGFRA	РІКЗСА	Drugs in Clinical Development 6		
	RET ¹	ROS1 ⁴	SMAD4	SMO		1. Th		


MED	CINE •OmniS	eq Targ	et TM for Lung Car	ncer PARK			
NYS CLEP Approved							
	Clinical Utility		pility of the test to improve healt to the current best alternative				
Target	Targeted Therapies with Known Responses in Lung Cancer						
Gene	Variant type	Frequency	Treatment	References			
AKT1	Mutation	1-2%	GSK690693, MK-2206, others	Carpten et al '07			
			GSK690693, MK-2206, others Crizotinib, LDK378	Carpten et al '07 Kwak et al '10; Shaw et al '14			
AKT1	Mutation	1-2%					
AKT1 ALK	Mutation Mutation, Translocation	1-2% 3-7%	Crizotinib, LDK378	Kwak et al '10; Shaw et al '14			
AKT1 ALK BRAF DDR2	Mutation Mutation, Translocation Mutation	1-2% 3-7%	Crizotinib, LDK378 Dasatinib (Y472C),	Kwak et al '10; Shaw et al '14 Sen et al '12; Gautschi et al			
AKT1 ALK BRAF	Mutation Mutation, Translocation Mutation Mutation	1-2% 3-7% 1-2% 4-5%	Crizotinib, LDK378 Dasatinib (Y472C), Dasatinib	Kwak et al '10; Shaw et al '14 Sen et al '12; Gautschi et al Hammerman et al '12			
AKT1 ALK BRAF DDR2 EGFR	Mutation Mutation, Translocation Mutation Mutation Mutation	1-2% 3-7% 1-2% 4-5% 10-20%	Crizotinib, LDK378 Dasatinib (Y472C), Dasatinib Gefitinib, Erlotinib, Afatinib	Kwak et al '10; Shaw et al '14 Sen et al '12; Gautschi et al Hammerman et al '12 Many			
AKT1 ALK BRAF DDR2 EGFR ERBB2	Mutation Mutation, Translocation Mutation Mutation Mutation, Amplification	1-2% 3-7% 1-2% 4-5% 10-20% 2-4%	Crizotinib, LDK378 Dasatinib (Y472C), Dasatinib Gefitinib, Erlotinib, Afatinib Afatinib	Kwak et al '10; Shaw et al '14 Sen et al '12; Gautschi et al Hammerman et al '12 Many De Greve et al '12			
AKT1 ALK BRAF DDR2 EGFR ERBB2 FGFR1	Mutation Mutation, Translocation Mutation Mutation Mutation, Amplification Amplification	1-2% 3-7% 1-2% 4-5% 10-20% 2-4% 10-15%	Crizotinib, LDK378 Dasatinib (Y472C), Dasatinib Gefitinib, Erlotinib, Afatinib Afatinib BGI398	Kwak et al '10; Shaw et al '14 Sen et al '12; Gautschi et al Hammerman et al '12 Many De Greve et al '12 Maichers et al '14			
AKT1 ALK BRAF DDR2 EGFR ERBB2 FGFR1 KRAS	Mutation Mutation, Translocation Mutation Mutation Mutation, Amplification Amplification Mutation	1-2% 3-7% 1-2% 4-5% 10-20% 2-4% 10-15% 15-25%	Crizotinib, LDK378 Dasatinib (¥472C), Dasatinib Gefitinib, Eriotinib, Afatinib Afatinib BGI398 Selumetinib (with	Kwak et al '10; Shaw et al '14 Sen et al '12; Gautschi et al Hammerman et al '12 Many De Greve et al '14 Malchers et al '14 Janne et al '13			
AKT1 ALK BRAF DDR2 EGFR ERBB2 FGFR1 KRAS MAP2K1	Mutation Mutation, Translocation Mutation Mutation Mutation, Amplification Amplification Mutation Mutation	1-2% 3-7% 1-2% 4-5% 10-20% 2-4% 10-15% 15-25% 1-2%	Crizotinib, LDK378 Dasatinib (V472C), Dasatinib Geftinib, Erlotinib, Afatinib Afatinib BGJ398 Selumetinib (with A2D6244 (preclinical)	Kwak et al '10; Shaw et al '14 Sen et al '12; Gautschi et al Hammerman et al '12 Many De Greve et al '14 Malchers et al '14 Janne et al '13 Marks et al '08			
AKT1 ALK BRAF DDR2 EGFR ERBB2 FGFR1 KRAS MAP2K1 MET	Mutation Mutation, Translocation Mutation Mutation Mutation, Amplification Amplification Mutation Mutation Amplification	1-2% 3-7% 1-2% 4-5% 10-20% 2-4% 10-15% 15-25% 1-2% 2-4%	Crizotinib, LDK378 Dasatinib (V472C), Dasatinib Gefitinib, Eriotinib, Afatinib Afatinib BGJ398 Selumetinib (with AZD6244 (preclinical) Crizotinib	Kwak et al '10; Shaw et al '14 Sen et al '12; Gautschi et al Hammerman et al '12 Many De Greve et al '12 Malchers et al '14 Janne et al '13 Marks et al '08 Ou et al '11			
AKT1 ALK BRAF DDR2 EGFR ERBB2 FGFR1 KRAS MAP2K1 MET NRAS	Mutation Mutation, Translocation Mutation Mutation Mutation Amplification Mutation Amplification Mutation Mutation Mutation	1-2% 3-7% 1-2% 4-5% 10-20% 2-4% 10-15% 15-25% 1-2% 2-4% 1-2%	Critotinib, LDK378 Dasatinib (Y472C), Dasatinib Gefitinib, Eriotinib, Afatinib BG1398 Selumetinib (with AZD6244 (preclinical) Crizotinib Trametinib (preclinical)	Kwak et al '10; Shaw et al '14 Sen et al '12; Gautschi et al Manmeman et al 12 Many De Greve et al '14 Malchers et al '14 Janne et al '13 Marks et al '108 Ou et al '11 Ohashi et al '13			
AKT1 ALK BRAF DDR2 EGFR ERBB2 FGFR1 KRAS MAP2K1 MET NRAS PIK3CA	Mutation Mutation, Translocation Mutation Mutation Mutation Mutation Mutation Mutation Mutation Mutation Mutation Mutation	1-2% 3-7% 1-2% 4-5% 10-20% 2-4% 10-15% 15-25% 1-2% 2-4% 2-4% 1-3%	Crizotinib, LOK378 Dasatinib Sastinib Sastinib Afatinib, Erfotinib, Afatinib Afatinib BGJ398 Selumetinib (with AZD6244 (preclinical) Crizotinib Trametinib (preclinical) Bubarlisib	Kwak et al '10; Shaw et al '14 Sen et al '12; Gautschi et al Hammerman et al '12 Many De Greve et al '12 Malchers et al '14 Janne et al '13 Marks et al '08 Ou et al '13 Ohashi et al '13 Bendell et al '13			





	New Cancer Drugs						
	Suffix	Meaning	Example				
	-ib	Inhibitor	Imatinib				
	-mo mab	Mouse antibodies	ibritumomab				
	-ximab	Chimeric antibodies Humanized antibodies	rituximab				
	-2011/20	numanizeu anubouies	lastuzullab				
	-umab	Fully human antibodies	ad alimu mab				
PAR PAR	PARK -						
	Oncology for Scientists '2017						

