Cell Cycle Regulation-Part II

Dhyan Chandra, Ph.D. Department of Pharmacology and Therapeutics L4-305, Center for Genetics and Pharmacology Roswell Park Cancer Institute Elm and Carlton Streets, Buffalo

Topics to be discussed

- Recap of the last cell cycle lecture
- Alteration of cellular signaling in cancer
- Cell cycle and apoptosis
- Differences between cancer and normal cells
- Cell cycle regulation in lung carcinogenesis
- The role of ROS in cell cycle

Phases of the cell cycle

Phases of the cell cycle

Cell cycle checkpoints

Cyclins Regulate Cyclin-Dependent Kinases

Cyclin-dependent kinases (cdks)

- •Multigene Family [cdk4, cdk6, cdk2, cdk1 (cdc2)]
- Serine/Threonine Kinases
- Require Cyclin Binding for Activity
- Regulated by Phosphorylation
- •Regulated by Cyclin-Dependent Kinase Inhibitors (ckis)

Cyclins

Regulatory Subunits of Cyclin/cdk Complexes
Main Cell Cycle Regulatory Cyclins: cyclin D1-3, cyclin E, cyclin A and cyclin B
Cyclin/cdk Associations: cyclin D/cdk4, cyclin D/cdk6, cyclin E/cdk2, cyclin A/cdk2, cyclin A/cdk1 and cyclin B/cdk1
Expression Oscillates During the Cell Cycle

Cyclin expression during cell cycle

Figure 8.10 The Biology of Cancer (© Garland Science 2014)

Control of cyclin levels during the cell cycle

Figure 8.12 The Biology of Cancer (© Garland Science 2014)

Cyclin Dependent-Kinase Inhibitors (ckis)

INK Family

- •p15^{INK4b}, p16^{INK4a}, p18^{INK4c}, p19^{INK4d}
- •Bind cyclin D-associating cdks (cdk4 and cdk6)
- Block interaction of cdks with cyclins

CIP/KIP Family

- •p21^{WAF1/CIP1}, p27^{KIP1}, p57^{KIP2}
- Inhibit Cyclin A/cdk2 and Cyclin E/cdk2
- Required for assembly of Cyclin D/cdk complexes
- •Do not inhibit cyclin D/cdk complexes at physiological levels

Interaction of cdki's with cdks

Cip/Kip cdki's stimulate cyclin D/cdk association and activity

Figure 8.17a The Biology of Cancer (@ Garland Science 2007)

<u>Cyclin D/cdk complexes sequester cip/</u> kip proteins form cyclin E/cdk2

Figure 8.17b The Biology of Cancer (© Garland Science 2007)

Positive Feedback Loop for E2F activation

Control of cyclin advance by extracellular signals

Figure 8.15a The Biology of Cancer (© Garland Science 2014)

Positive-feedback loops and irreversibility of cell cycle advance

Figure 8.25a The Biology of Cancer (© Garland Science 2014)

Positive-feedback loops and irreversibility of cell cycle advance

Alteration of cellular signaling in cancer

Components of the E2F-pRB pathway disrupted in cancer

pRB	mutated or deleted					
p130	mutated (rare?)					
Cyclin D1	overexpressed (amplification/transcriptional)					
Cyclin E (rare)	overexpressed					
cdk4	overexpressed					
	mutated to disrupt p16 ^{INK4a} binding					
р16 ^{INK4а}	deleted or transcriptionally repressed					
p27 ^{KIP1} downregulated						

Table 8.4 Alteration of the cell cycle clock in human tumors A plus sign indicates that this gene or gene product is altered in at least 10% of tumors analyzed. Alteration of gene product can include abnormal absence or overexpression. Alteration of gene can include mutation and promoter methylation. More than one of the indicated alterations may be found in a given tumor.

Tumor type	Gene product or gene						% of tumors with 1 or
	Rb	Cyclin E1	Cyclin D1	p16 ^{INK4A}	p27 ^{Kip1}	CDK4/6	more changes
Glioblastoma	+	+		+	+	+/+	>80
Mammary carcinoma	+	+	+	+	+	+/	>80
Lung carcinoma	+	+	+	+	+	+/	>90
Pancreatic carcinoma			a		+		>80
Gastrointestinal carcinoma	+	+	+b	+	+	+/<	>80
Endometrial carcinoma	+	+	+	+	+	+/	>80
Bladder carcinoma	+	+	+	+	+		>70
Leukemia	+	+	+	+d	+	+/	>90
Head and neck carcinomas	+		+	+	+	+/	>90
Lymphoma	+	+	+ ^e	+d	+	/+	>90
Melanoma		+	+	+	+	+/	>20
Hepatoma	+	+	+	+d	+	+/ ^c	>90
Prostate carcinoma	+	+	+	+	+		>70
Testis/ovary carcinomas	+	+	+b	+	+	+/	>90
Osteosarcoma		+		+		+/	>80
Other sarcomas		+	+	+	+	/+	>90

^aCyclin D3 (not cyclin D1) is present and is up-regulated in some tumors.

^bCyclin D2 also is up-regulated in some tumors.

CDK2 is also found to be up-regulated in some tumors.

dp15^{INK48} is also found to be absent in some tumors.

Cyclin D2 and D3 are also found up-regulated in some lymphomas.

Adapted from M. Malumbres and M. Barbacid, Nat. Rev. Cancer 1:222-231, 2001.

Table 8.4 The Biology of Cancer (© Garland Science 2014)

Control of cyclin D levels

Figure 8.11b The Biology of Cancer (© Garland Science 2014)

Source of signal	Signaling intermediaries	Type of cyclin
RANK receptor	NF-ĸB pathway	D1
Prolactin receptor	Jak/STAT	D1
Estrogen receptor	AP-1 TF (?)	D1
Focal adhesion kinase		D1
HER2/Neu receptor	E2F and Sp1 TFs	D1
Wnts-Frizzled receptor	β-catenin and Tcf/Lef TFs	D1
Bcr/Abl		D2
FSH receptor	cyclic AMP	D2
Various mitogens	Мус	D2
Interleukin-4, 7 receptor		D2
Interleukin-5 receptor	STAT3/5	D3
Mitogens	E2A TF	D3

Table 8.1 Induction of D-type cyclin expression by extracellular signals

Abbreviations: RANK, receptor activator of NF-kB; FSH, follicle-stimulating hormone.

Table 8.1 The Biology of Cancer (© Garland Science 2014)

Control of cyclin D1 levels by Ras

Figure 8.26 The Biology of Cancer (© Garland Science 2014)

Action of Myc on cell cycle

Figure 8.28 The Biology of Cancer (© Garland Science 2014)

Action of Myc-ER (estrogen receptor) on cell cycle

Figure 8.29 The Biology of Cancer (© Garland Science 2014)

Myc inhibits cell differentiation by ID (inhibitor of differentiation)

Figure 8.34 The Biology of Cancer (© Garland Science 2014)

Perturbation of the R-point transition in human tumors

E2F1 and Apoptosis

Overexpression of E2F1 induces apoptosis

Apoptotic effects of E2F1 blocked by pRB

Induces p53-dependent and -independent apoptosis

•p53-Dependent

a) E2F upregulates p53 levels (through ARF)

b) enhances apoptotic function of p53 (e.g. by competition for p300)

•p53-Independent

- a) enhanced by p300
- b) blocks antiapoptotic pathways (e.g. NFkB activity, IAP expression)

c) inhibition of E2F1 phophorylation in S-phase enhances apoptosis

d) May involve p73

Regulation and activities of p53 and E2F

Nature Reviews | Cancer

E2F1 regulates p53 and thus apoptosis

Nature Reviews | Cancer

Differences between cancer and normal cells

Contrasting schemes of the proposed response of normal and cancer cells to mitogens.

Zwang Y et al. Cancer Res 2012;72:1051-1054

Cell cycle regulation in lung carcinogenesis

Abnormalities of cell cycle regulators in human lung tumors

Alterations in components of cell cycle checkpoints in lung tumors

Alterations of the G1/S transition regulators in NSCLC vs SCLC

The role of ROS in cell cycle

Mitochondria

Mitochondrial respiratory chain

