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Overview

- History of radiation and radiation-induced

damage
- Bystander effect of radiation
- Methods for DNA damage analysis
- Stages of carcinogenesis and models
- Mechanism of radiation-induced carcinogenesis
- Role of oncogenes and tumor suppressors
- Risk projections and risk estimates
- Importance of dose and age on tumor incidence
- Second malignancy after radiotherapy




Radiation and cancer

« 1895- Roentgen discovered X-rays

« 1896- Henri Becquerel discovered radioactivity

« 1897- Rutherford discovered a and [3 rays

« 1898- Curies discovered polonium and radium

« 1902- First report on radiation-induced skin cancer

* 1911- First report of leukemia in 5 radiation workers
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Types of radiation

lonizing radiation:
- a particles (2 protons and 2 neutrons)
- B particles (electron equivalent)
- Neutrons
- Gamma rays
- X-rays

Non-ionizing radiation:
- Microwaves
- Visible light
- Radio waves and TV waves
- UV radiation (except shortest wavelengths)
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THE ELECTROMAGNETIC SPECTRUM
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Ultraviolet / Visible Light Spectrum
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Units and doses

Activity:
Quantity of a radionuclide which describes the rate at
which decays occur in an amount of a radionuclide.

The Sl unit of radioactivity is the becquerel (Bq), which
replaced the old unit, the curie (Ci).

Becquerel (Bqg): One becquerel corresponds to 1
disintegration of a radionuclide per second.

Curie (Ci): Old unit of radioactivity, corresponding to
3.7 x 1079 radioactive disintegrations per second



Units and doses

Absorbed dose (D):
The energy imparted per unit mass by ionizing
radiation to matter at a specific point.

Gy: The Sl unit of absorbed dose is joule per kilogram
(J kg-1). The special name for this unit is gray (Gy).

Rad: The previously used special unit of absorbed
dose, the rad, was defined to be an energy absorption
of 100 ergs/gram. Therefore, 1 Gy = 100 rad.



Units and doses

Relative biological effectiveness (RBE) - A factor used
to compare the biological effectiveness of different types of
lonizing radiation. It is the inverse ratio of the amount of
absorbed radiation, required to produce a given effect, to a
standard (or reference) radiation required to produce the
same effect.

Rem (roentgen equivalent in man) - Old unit of
equivalent or effective dose. It is the product of absorbed
dose (in rad) and the radiation weighting factor. 1 rem =.
01 Sv.

Sievert (Sv) - Sl unit of equivalent dose or effective dose.
1 Sv =100 rem.



Linear energy transfer (LET)

- The rate of energy loss or deposition along the
track of an ionizing particle

- Loss of energy/unit distance traveled in matter
- Units = KeV/um

- Varies depending of quality of radiation



Linear energy transfer (LET)

X-ray or y-ray. X X Sparsely lonizing
B particle: X X X

Neutron: XXXXXXX Densely lonizing
a particle XXXXXXXX

The more sparsely ionizing, the more penetrating
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Radiation-induced cancer in human

- Atomic bomb survivors
- Accidents

- Medically exposed individuals including
cancer patients undergoing radiation therapy



Early cases of human experience

» Skin cancer in early x-ray workers

* Lung cancer in underground uranium
miners in Saxony and Colorado

* Bone cancer in radium dial painters

 Liver cancer in thorotrast patients (use
of thorium dioxide as radiocontrast
agent in medical radiography in 30s-40s



Later cases of human experience

» Hiroshima/Nagasaki survivors

« Radiation treatment of Anklyosing Spondylitis
patientsn (arthritis of spine)

* Elevated incidence of leukemia in early
radiologists ca 1922

* Thyroid cancer from treatment for enlarged
thymus

« Thyroid and other cancers for treatment of
tinea capitis by radiation
* Breast cancer due to frequent chest X-Ray

fluoroscopy in tuberculosispatients between
1925 to 1954



Damaging agent

Oxygen radicals  lonizing radiation Anfitumor agents  UV-light Replication errors
Alkylating agents (MMC, cis-Pt) Polycyclic aromatic
Spontaneous hydrocarbons
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Sources and consequences of DNA damage

Exogenous Sources Endogenous Sources
UV and other radiation ROS, alkylation,
sources, chemicals Single-strand hydrolysis

Misreplication,

Blocked transcription
aberrant chromosomal c ptio

: Blocked replication
segregation DNA repair
l systems l
Mutations, Cell-cycle delay or arrest,
chromosomal aberrations cell death
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Measurements of DNA damage

DNA in Cells
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Measurements of DNA damage

DNA damage (OTM)
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Measurements of DNA damage

Undamaged cell

Cell irradiated with 12.5 Gy X-rays

Cell treated with 2 DNA cross-linking agent
and irradiated with 12.5 Gy X-rays

Hartley et al., Cancer Cell
Culture: Methods and Protocol
Vol 731 Chapter 25




Major regulatory steps in the process of DNA damage response
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DNA damage and human cancer
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DNA damage — —__
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DNA damage and autophagy

CGrowth factor deprivation
Nutrient depletion
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DNA damage, autophagy, and Cancer
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Radiation-induced chromosomal
aberrations

X-rays or ionizing radiation induces DSBs in
the chromosomes. DSBs causes sticky ends,
which can join with any other sticky ends.

1) Rejoin to original configurations
2) The breaks falils to rejoin causing deletion
3) Broken ends may join other sticky ends



Acentric and dicentric chromosomes




Ring chromosome




Translocation, deletion, and inversion
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Bystander effect

Genetic alterations can occur in cells that receive
no direct radiation exposure

Damage signals transmitted from neighboring
irradiated cells



Bystander effect

a Direct

Effect
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- == 10-30%

Effect

Dose

Figure 2 | Key aspects of radiation-induced bystander responses. Typical dose
response curves for direct (a) and bystander (b) responses are shown, highlighting the
commonly observed saturation of response for bystander effects.

Prise and Sullivan 2009

www.nature.com/reviews/cancer



4 Bystander responses
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Cancer incidence at various ages
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Multistep tumorigenesis in variety of organ sites
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Mouse skin model

INITIATION

PROMOTION

PROGRESSION

1. Covalent
binding of
carcinogen to
DNA, cell
replication, and
fixation of
mutation.

2. Mutation
induction in
critical target
genes of stem
cells, e.g. H-ras

3. Phenotypically
“normal”’
epidermis

1. Expansion of
initiated stem
cells through
epigenetic
mechanisms

2. Altered gene
expression/
enzyme activities

3. Angiogenesis

1. Production and
maintenance of
chrenic cell
proliferation

2. Development
of clonal
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papillomas

3. Altered
differentiation

4. Diploid stem
line

1. Additional
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stochastically
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&7

3. LOH

4. Further
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1. Invasion
2. Metastasis
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suppressor
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mutation

4. Gene
amplification e.g.
mutated Hras
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Overview of carcinogenesis
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Oncogene activation and inactivation
of tumor suppression genes

 Activation of proto-oncogenes
* Loss of function of tumor suppressors
* Infection with certain viruses

» Substitution of normal promoters of
proto-oncogenes with strong
promoters of viruses

e Chromosomal aberrations



Oncogene activation and inactivation
of tumor suppression genes

- Mutational event in initiation of radiation
carcinogenesis most likely involves LOH of a
tumor suppressor gene

- Deletion of RB tumor suppressor gene on
13914

- Hypersensitivity of retinoblastoma patients to
the induction of secondary cancers



Oncogene activation and inactivation
of tumor suppression genes

- Knockout mice heterozygous for p53 tumor
suppressor gene more susceptible to
radiation induced tumors

- Expression of p53 mutations occur late in
radiation-induced malignant transformation

- Activation of oncogene RAS family reported
INn mouse lymphomas



Oncogene activation and inactivation
of tumor suppression genes

- Radiation may induce papillary thyroid
carcinomas in children as a result of
oncogene activation

- Amplification/overexpression of MDM2
found in X-ray transformed foci and
expression of mutant p53

- Multiple pathways for transformation



Four-stage hypothesis

Chromosomal damage Iin normal
dividing cells

Defect in differentiation genes
Gene defect in hyperplastic cells

Gene defect in cancer cells



Chromosomal damage in normal
cells

* Low or high dose radiation exposure can lead to
chromosomal damage in normal cells.

- These cells may undergo cell death, divide, or
differentiate.



Defect in differentiation genes

 One or two normal damaged cells develop
a defect in differentiation genes, which
prevent them from a normal pattern of
differentiation and death.

« Continuing division of these cells leads to
hyperplasia and develop in adenoma.



Accumulated gene defects in
cells causes cancer

* One or two hyperplastic cells in any
adenoma can accumulate additional gene
defects due to mutations or chromosomal
damage, which can make them cancerous.



Colon tumor model
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lonizing particles
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Types of risk model

« Absolute Risk Model — radiation induces cancers
over and above the natural incidence.

-leukemia follows an absolute risk model

* Relative Risk Model - radiation increases the
natural incidence at all ages proportional to
spontaneous background rates (predicts a larger
number of induced cancers in old age following
radiation)

 Time-dependent relative risk — function of dose,
age at exposure, time since exposure, gender, etc.



Cancer latency

* Leukemia has the sortest latency of about 5 years

 Whereas, solid cancers have a latency of 20 or more
years following radiation



Excess risk / year

due to initiation

Risk related to initiation upon
radiation exposure

A.INITIATION

Age (years)

Shuryak et. al., JNCI 2010



Excess risk / year

due to promotion

Risk related to promotion upon
radiation exposure

B. PROMOTION &

Age (years)

Shuryak et. al., JNCI 2010



Risk related to initiation and

promotion upon radiation exposure

Excess lifetime risk

C. LIFETIME RISKS

» _ +«Initiation

Age at exposure (years)

Shuryak et. al., JNCI 2010



Dose-response relationships
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Age plays a critical role for cancer risk

Attributable Life-Time Risk
% per Sv

Population averages .

e Females
l....
»
Males **d»
-~

50 100 Eric Hall, Ph.D.,
Age at Time of Exposure

The data suggest that children and young adults are much more susceptible to
radiation-induced cancer than the older aged populations.



FIGURE 10.8 ® The attributable lifetime risk from
a single small dose of radiation at various ages at the
time of exposure. Note the dramatic decrease in
radiosensitivity with age. The higher risk for the
younger age-groups is not expressed until late in life.
These estimates are based on a relative risk model and
on a dose and dose-rate effectiveness factor (DDREF)

of 2. (Adapted from ICRP: Recommendations. Annals of
the ICRP Publication 60, Oxford, England, Pergamon
Press, 1990.)



Site—Specific Risk Estimates

ERR, Excess Relative Risk
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Lowest dose category with
significant increase in cancer risk
in Atomic-bomb survivors

Cancer incidence: 5-100 mSv. Mean: 29 mSyv
(Pierce et al 2000)
Cancer mortality: 5-125 mSv. Mean: 34 mSyv

(Preston et al., 2003)



Summary

Data suggest linear dose response with no thresold
Increased risk: 0-100 mSyv

Women have higher risk than men

Excess risk cintinues throughout life



Tissue culture model

« Above 100 rads: the transformation

frequency may exhibit a quadratic
dependence on doses.

« Between 30 and 100 rads: the transformation
frequency may not vary with dose

* Below 30 rads: the transformation frequency
may be directly proportional to dose.



Dose-response curves for the induction of neoplastic transformation in mouse cells by x-
irradiation. The upper curve is for BALB/3T3 cells; the bottom curve for C3H/10T 1/2 cells.
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Transformation incidence of
irradiated cells
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Radiation + promoter
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Occurrence of secondary
cancers following radiotherapy

- Current advances in cancer therapy has
increased survival of patients

- The occurrence of radiation-induced secondary
cancers IS serious concern

- Accurate dosing and dosimetry are critical during
radiation therapy



Occurrence of secondary
cancers following radiotherapy

- Risk of secondary cancers is hard to assess due to
lack of proper control

- In prostate and cervix cancer, surgery is an option

- Higher risk of breast cancer in young patients
with Hodgkin lymphoma



Percentage Increase in Relative Risk for RT vs. Surgery %
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Risk of Radiation-Associated Second
Malignancy After Prostate-Cancer
Radiotherapy

Brenner ef af 1999
Eric Hall, Ph.D.,




Lung Cancer after Hodgkin’s Disease
by Type of Treatment *

P trend <0.001
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Summary

- History of radiation and radiation-induced

damage
- Bystander effect of radiation
- Methods for DNA damage analysis
- Stages of carcinogenesis and models
- Mechanism of radiation-induced carcinogenesis
- Role of oncogenes and tumor suppressors
- Risk projections and risk estimates
- Importance of dose and age on tumor incidence
- Second malignancy after radiotherapy



