Laboratory Techniques I
Oncology for Scientists I

September 8th, 2016
Hayley Affronti, PhD Student
\url{Hayley.Affronti@roswellpark.org}

Dr. Sheila Figel too!
“When we first hit the lab there are so many things to learn before we even get started that many things go unlearned” – *BiteSize Bio*
Overview

• Experimental Principles
• Molecular biology techniques, that everyone needs!
 – DNA-PCR
 – RNA-rt-PCR
 – Protein-western blotting
• Cell culture
Experimental Principles

• Controls
 – Negative
 – Positive

• Quantification
 – Qualitative vs Quantitative data

• Technical replicates vs. biological replicates
Qualitative vs. Quantitative

- **Qualitative**
 - “Quality”
 - A change in appearance or other characteristic has been observed
 - Descriptive
 - “Cells have become elongated and fibroblastic”

- **Quantitative**
 - “quantity”
 - A change in some parameter that you have measured
 - Objectively measured
 - “92% of the cells show an elongated phenotype as indicated by a length-to-width ratio of greater than 4.”

www.proteomesci.com
Replicates

• Technical replicates
 – Within a single experiment
 – Make measurements from the same source at the same time
 – Demonstrates consistency in technique

• Biological replicates
 – Multiple repetitions of the same experiment
 – Demonstrates consistency in experimental results
Replicates

Example: wound-healing assay

- Technical replicates
 - Three independent measurements along the length of the “wound”

- Biological replicates
 - Repeat the experiment three times
Basic molecular techniques that everyone needs!!!

And... More importantly
DNA, RNA and protein

DNA → RNA → Protein

- DNA
 - Southern blot
 - PCR

- RNA
 - Northern blot
 - RT-PCR, qPCR

- Protein
 - Western blot
DNA

• Older techniques allow yes/no detection of gene copies or chromosomal rearrangements
 – Fluorescence in situ hybridization (FISH)
 – Spectral karyotyping (SKY)
 – Southern blotting
• Modern techniques allow sequence analysis
 – PCR
 – Genome sequencing
Extraction of genomic DNA

1. **Cell Lysis!**
 - High concentrations of chaotropic salt (HCl, guanidine thiocyanate, urea, and lithium perchlorate)
 - Detergents
 - Enzymes (Proteinase K)

2. **DNA purification**
 - Phenol/Chloroform extraction
 - Denatured proteins in the phenol layer
 - Ethanol precipitation of DNA in aqueous layer
How does it work!?
Extraction of Plasmid DNA

- Plasmids maintained in E. coli
- Alkaline lysis
 - Step 1 – resuspend bacteria
 - Step 2 – lysis/denaturation
 - NaOH/SDS – bursts cells & denatures DNA (bacterial chr. & plasmid)
 - Step 3 – precipitation of protein/bact DNA
 - Potassium acetate – plasmid DNA renatures
 - Step 4 – ethanol precipitation of plasmid DNA
PCR

- Amplifications of small segments of DNA
- Used to identify mutations, cloning, expression (qPCR)
Materials for PCR

- PCR reaction mixture:
 - DNA template
 - gDNA
 - Plasmid DNA
 - cDNA (RT-PCR)
 - Primers
 - Polymerase
 - Taq
 - Buffer
 - Thermal cycler
Steps for PCR

• Denaturation
 – Separate the strands of DNA
 – Heat to 95 or 98°

• Annealing
 – Primer binding to DNA
 – Temperature varies
 – Depends on the Tm of primer
 – Typically 5° less than the lowest Tm of the primer

• Elongation
 – Polymerase binds to primed DNA and adds nucleotides

• Cycles
 – Typically ~30
Agarose Gel Electrophoresis

• Electrophoresis
 – Migration of molecules through a matrix based on size & charge
 – Matrix is solid but porous

• Agarose
 – DNA, RNA
 – Restriction digest
Types or PCR

1. Standard PCR
 – Amplify DNA (genomic or plasmid)

2. Reverse transcription PCR (RT-PCR)
 – Amplify cDNA

3. qPCR
 – Quantitative PCR
 – Amplify DNA or RNA
rt-PCR

- RNA extraction (Trizol)
- Reverse transcription PCR
- Semi-quantitative – compare signals on gel
- Detect cDNAs (indicative of RNA)

Steps:
- Reverse transcription
 - RNA \rightarrow cDNA
- PCR using cDNA template

Naito et al, 2004
qPCR (Real-Time PCR)

- Quantitative PCR
- Amplify short segment representing a gene
- DNA-binding dye
 - SYBR Green
 - Excitation = 488 nm
 - Emission = 522 nm
- Fluorescence of dsDNA measured after each cycle
- Relative quantification
 - Compare amplified amt to that of housekeeping gene

\[Ct = \text{Threshold cycle} \]
Quantitative PCR

• Apply qPCR to cDNAs to quantify RNA levels
• This replaces older RNA detection techniques such as northern blotting (which is semi-quantitative)
PCR experimental principles

• Controls
 – Amplification of housekeeping gene (RT-PCR & qPCR)
 – Positive – DNA template known to contain the correct sequence
 – Negative – Reaction mixture + water (no template)

• Quantification
 – Standard PCR is qualitative – presence/absence of band, sequence data
 – RT-PCR is semi-quantitative – band intensities can be compared based on equivalent control signal for each sample
 – qPCR is quantitative – Ct values can be compared
Western blot

- Allows comparison of levels of protein in samples
- *Ex: Is expression of a certain protein decreased when cells are treated with a drug?*

- Steps
 - Isolation of protein
 - Run lysates through SDS-PAGE gel
 - Transfer protein from gel to membrane
 - Incubate membrane with 1°/2° antibodies
 - Detect signal via film

Lee et al, 2011
WB-isolation of protein

• Cells or tissue

• RIPA (radioimmunoprecipitation lysis assay buffer)
 – Contains SDS & sodium deoxycholate – ionic detergents
 – Disrupts membranes & protein-protein interactions
 – Proteinase inhibitors

• Quantification of total protein in lysate
 – Bradford assay
 • Coomassie dye turns from red to blue when binding protein
 • Read A595
 • Compare to standard curve to determine protein concentration
 • ug/ul
WB-SDS PAGE

- SDS = sodium dodecyl sulfate
 - Detergent

- PAGE = polyacrylamide gel electrophoresis

- Preparation of SDS-PAGE gel
 - Acrylamide:bisacrylamide (what polymerizes)
 - 7.5% gel, 10% gel, etc
 - SDS (denaturant)
 - Buffer (maintains pH)
 - APS/TEMED (initiates polymerization)
The elements, because this is pretty cool...

Glycine
Proteins
Cl-
Proteins
Glycine
WB-transfer

- Transfer protein from gel to membrane
 - PVDF or nitrocellulose
 - Hydrophobic
 - Assemble “sandwich”
 - Electroblotting
WB – detection via 1°/2° antibodies

• Block membrane
 – Prevent non-specific binding of antibodies
 – BSA, non-fat milk

• 1° antibody
 – Specific for protein of interest

• 2° antibody
 – Specific for the species of the 1° Ab
 – Conjugated to a fluor or to HRP (horseradish peroxidase)
WB – detection via 1°/2° antibodies

- Fluor-conjugated 2° Ab
 - Scan membrane & detect fluorescence

- HRP-conjugated 2° Ab
 - Incubate membrane with ECL reagent
 - Expose membrane to X-ray film

Lee et al, 2011
WB experimental principles

• **Controls**
 – Immunoblotting (same membrane) for housekeeping gene (ex: GAPDH)
 • Loading control
 – Positive – Protein lysate from known positive sample
 – Negative – Dependent on experiment
 • Ex: Treatment of control cells with PBS instead of drug
 • Ex: Treated cells at “0 h” (before drug can have an effect)

• **Quantification**
 – WB is *semi-quantitative* – band intensities can be compared based on equivalent control signal for each sample
 – In order to quantify, apply densitometry analysis
Densitometry

- Allows quantification of images based on pixel intensity
- A way to quantify rt-PCR and WB

Using Image J:
- Measure pixel intensity of all bands
- Normalize the value of each band to the value of its associated actin band
- Compare normalized values

Cao et al, 2011
Cell Culture

- 1900s – tissue culture
 - Harrison & Carrel
 - “a method for studying the behavior of animal cells free of systemic variations that might arise in the animal both during normal homeostasis and under the stress of an experiment”
- 1952 – development of continuous human tumor cell line
 - HeLa
- Uses of cultured cells:
 - Development of antiviral vaccines
 - Production of monoclonal antibodies
 - Production of cell products
 - Insulin, HGH, interferon
 - Understanding of neoplasia
Cell Culture

• Benefits
 – Can carefully control environment
 – Preservation
 – Avoid using animals
 – Rapid, relatively cheap

• Disadvantages/limitations
 – Expertise
 – Identification of cell type
 – Genetic & phenotypic instability
 – Quantity
Cell Culture-Types of Cells

• **Primary culture**
 – Cells isolated from tumors or organs
 – Non-immortalized
 – Replication limit → senescence

• **Immortalized cell lines**
 – Have evaded senescence
 – Sources
 • Cancer – ex, HeLa, A549
 • Stable expression of a gene which de-regulates cell cycle
 – Adenovirus E1 in HEK293
 – Telomerase
Cell Culture-Types of cells

• Adherent
 – Epithelial & fibroblast

• Non-adherent
 – Hematopoietic cells
 – Jurkat cells – human T lymphocytes
Cell Culture Basics

• Growth media
 – DMEM, MEM, RPMI 1640
 • Amino acids, vitamins, glucose
 – Phenol red – pH indicator
 – Serum – FBS, FCS, BS
 • Proteins & polypeptides, growth factors, amino acids, lipids, carbohydrates, polyamines, urea, inorganics, hormones, vitamins
 • Contains antitrypsin activity

Thai et al, 2014
Cell Culture Basics – adherent cells

• Plates/flasks
 – “Tissue culture treated”
 • Plates are made of polystyrene which is hydrophobic
 • TC treatment (many types) → make surface hydrophilic/negatively charged
 • Cell adhesion proteins (ex, vitronectin & fibronectin) can coat plate
Cell Culture basics – adherent cells

- **Subculturing**
 - Trypsin/EDTA
 - Trypsin
 - Serine protease
 - Cleaves adhesion proteins (integrins)
 - Optimal activity at 37°
 - EDTA
 - Chelating agent – Calcium & Magnesium
 - Neutralize with complete (serum-containing) medium
Aseptic Technique

- Cell culture must be kept sterile
- Free of microorganisms
 - Bacteria
 - Fungi
 - Viruses
- **Aseptic technique** – designed to create a barrier between the sterile cell culture & microorganisms in the environment
 - Sterile work area
 - Good personal hygiene
 - Sterile reagents & media
 - Sterile handling
Summary I

• Cell & molecular techniques allow scientists to examine subcellular components
• Each experiment should include positive & negative controls
• Measurements can be qualitative or quantitative
• Technical replicates ensure consistency within an experiment; biological replicates provide confidence in experimental results
• DNA may be extracted using phenol/chloroform or (for plasmids) alkaline lysis
Summary II

• PCR allows us to amplify pieces of DNA or cDNA
• Western blotting allows detection of proteins within cells or tissue
• Densitometry enables quantification of otherwise semi-quantitative data through analysis of image pixel intensity
• Cell culture is a way to study cells in the laboratory
• Aseptic technique is critical in cell culture
Thank you!
Questions???