Laboratory Techniques I Oncology for Scientists I

September 8th, 2016 Hayley Affronti, PhD Student <u>Hayley.Affronti@roswellpark.org</u>

Dr. Sheila Figel too!

"When we first hit the lab there are so many things to learn before we even get started that many things go unlearned" – *BiteSize Bio*

Overview

- Experimental Principles
- Molecular biology techniques, that everyone needs!
 - DNA-PCR
 - RNA-rt-PCR
 - Protein-western blotting
- Cell culture

Experimental Principles

- Controls
 - Negative
 - Positive
- Quantification
 - Qualitative vs Quantitative data
- Technical replicates vs. biological replicates

Qualitative vs. Quantitative

- Qualitative
 - "Quality"
 - A change in appearance or other characteristic has been observed
 - Descriptive
 - "Cells have become elongated and fibroblastic"

www.proteomesci.com

- Quantitative
 - "quantity"
 - A change in some parameter that you have measured
 - Objectively measured
 - "92% of the cells show an elongated phenotype as indicated by a length-to-width ratio of greater than 4."

Replicates

- Technical replicates
 - Within a single experiment
 - Make measurements from the same source at the same time
 - Demonstrates consistency in technique
- Biological replicates
 - Multiple repetitions of the same experiment
 - Demonstrates consistency in experimental results

Replicates

Example: wound-healing assay

- Technical replicates
 - Three independent measurements along the length of the "wound"
- Biological replicates
 - Repeat the experiment three times

Basic molecular techniques that everyone needs!!!

And.... More importantly

DNA, RNA and protein

- DNA
 - Southern blot
 - PCR
- RNA
 - Northern blot
 - RT-PCR, qPCR
- Protein
 - Western blot

DNA

- Older techniques allow yes/no detection of gene copies or chromosomal rearrangements
 - Fluorescence in situ hybrization (FISH)
 - Spectral karyotyping (SKY)
 - Southern blotting
- Modern techniques allow sequence analysis
 - PCR
 - Genome sequencing

SKY

FISH

Extraction of genomic DNA

- 1. Cell Lysis!
 - High concentrations of chaotropic salt (HCl, guanidine thiocyanate, urea, and lithium perchlorate)
 - Detergents
 - Enzymes (Proteinase K)
- 2. DNA purification
 - Phenol/Chloroform extraction
 - Denatured proteins in the phenol layer
 - Ethanol precipitation of DNA in aqueous layer

How does it work!?

mixed

centrifugation

solution

Extraction of Plasmid DNA

- Plasmids maintained in E. coli
- Alkaline lysis
 - Step 1 resuspend bacteria
 - Step 2 lysis/denaturation
 - NaOH/SDS bursts cells & denatures DNA (bacterial chr. & plasmid)
 - Step 3 precipitation of protein/bact
 DNA
 - Potassium acetate plasmid DNA renatures
 - Step 4 ethanol precipitation of plasmid DNA

PCR

- Amplifications of small segments of DNA
- Used to identify mutations, cloning, expression (qPCR)

Polymerase chain reaction - PCR

Denaturation at 94-96°C

2 Annealing at ~68°C

3 Elongation at ca. 72 °C

Materials for PCR

- PCR reaction mixture:
 - DNA template
 - gDNA
 - Plasmid DNA
 - cDNA (RT-PCR)
 - Primers
 - Polymerase
 - Taq
 - Buffer
 - Thermal cycler

Steps for PCR

- Denaturation
 - Separate the strands of DNA
 - Heat to 95 or 98°
- Annealing
 - Primer binding to DNA
 - Temperature varies
 - Depends on the Tm of primer
 - Typically 5° less than the lowest Tm of the primer
- Elongation
 - Polymerase binds to primed DNA and adds nucleotides
- Cycles
 - Typically ~30

Agarose Gel Electrophoresis

- Electrophoresis
 - Migration of molecules
 through a matrix based on <u>size</u>
 <u>& charge</u>
 - Matrix is solid but porous
- Agarose
 - DNA, RNA
 - Restriction digest

Types or PCR

- 1. Standard PCR
 - Amplify DNA (genomic or plasmid)
- 2. Reverse transcription PCR (RT-PCR)
 - Amplify cDNA
- 3. qPCR
 - *Quantitative* PCR
 - Amplify DNA or RNA

rt-PCR

- RNA extraction (Trizol)
- Reverse transcription PCR
- Semi-quantitative compare signals on gel
- Detect cDNAs (indicative of RNA)

qPCR (Real-Time PCR)

- Quanititative PCR
- Amplify short segment representing a gene
- DNA-binding dye
 - SYBR Green
 - Excitation = 488 nm
 - Emission = 522 nm
- Fluorescence of dsDNA measured after each cycle
- Relative quantification
 - Compare amplified amt to that of housekeeping gene

Ct = Threshold cycle

Quantitative PCR

- Apply qPCR to cDNAs to <u>quantify RNA levels</u>
- This replaces older RNA detection techniques such as northern blotting (which is semi-quantitative)

PCR experimental principles

• Controls

- Amplification of housekeeping gene (RT-PCR & qPCR)
- Positive DNA template known to contain the correct sequence
- Negative Reaction mixture + water (no template)

Quantification

- Standard PCR is <u>qualitative</u> presence/absence of band, sequence data
- RT-PCR is <u>semi-quantitative</u> band intensities can be compared based on equivalent control signal for each sample
- qPCR is <u>quantitative</u> Ct values can be compared

Western blot

- Allows comparison of levels of protein in samples
- Ex: Is expression of a certain protein decreased when cells are treated with a drug?
- Steps
 - Isolation of protein
 - Run lysates through SDS-PAGE gel
 - Transfer protein from gel to membrane
 - Incubate membrane with 1°/2° antibodies
 - Detect signal via film

Lee et al, 2011

WB-isolation of protein

- Cells or tissue
- RIPA (radioimmunoprecipitation lysis assay buffer)
 - Contains SDS & sodium deoxycholate ionic detergents
 - Disrupts membranes & protein-protein interactions
 - proteinase inhibitors
- Quantification of total protein in lysate
 - Bradford assay
 - Coomassie dye turns from red to blue when binding protein
 - Read A595
 - Compare to standard curve to determine protein concentration
 - ug/ul

WB-SDS PAGE

• SDS = sodium dodecyl sulfate

Detergent

• PAGE = polyacrylamide gel electrophoresis

• Preparation of SDS-PAGE gel

- Acrylamide:bisacrylamide (what polymerizes)
 - 7.5% gel, 10% gel, etc
- SDS (denaturant)
- Buffer (maintains pH)
- APS/TEMED (initiates polymerization)

The elements, because this is pretty cool...

WB-transfer

- Transfer protein from gel to membrane
 - PVDF or nitrocellulose
 - Hydrophobic
 - Assemble "sandwich"
 - Electroblotting

WB – detection via 1°/2° antibodies

- Block membrane
 - Prevent non-specific binding of antibodies
 - BSA, non-fat milk
- 1° antibody
 - Specific for protein of interest
- 2° antibody
 - Specific for the species of the 1° Ab
 - Conjugated to a fluor or to HRP (horseradish peroxidase)

WB – detection via 1°/2° antibodies

- Fluor-conjugated 2° Ab
 - Scan membrane & detect fluorescence
- HRP-conjugated 2° Ab
 - Incubate membrane with ECL reagent
 - Expose membrane to X-ray film

Secondary antibody conjugated with HRP recognizes the primary antibody

Proteins on membrane after transfer from gel

to the target protein

WB experimental principles

- Controls
 - Immunoblotting (same membrane) for housekeeping gene (ex: GAPDH)
 - Loading control
 - Positive Protein lysate from known positive sample
 - Negative Dependent on experiment
 - Ex: Treatment of control cells with PBS instead of drug
 - Ex: Treated cells at "0 h" (before drug can have an effect)

Quantification

- WB is <u>semi-quantitative</u> band intensities can be compared based on equivalent control signal for each sample
- In order to quantify, apply densitometry analysis

Densitometry

- Allows quantification of images based on pixel intensity
- A way to quantify rt-PCR and WB

Using Image J:

- Measure pixel intensity of all bands
- Normalize the value of each band to the value of its associated actin band
- Compare normalized values

Cao et al, 2011

Cell Culture

- 1900s tissue culture
 - Harrison & Carrel
 - "a method for studying the behavior of animal cells free of systemic variations that might arise in the animal both during normal homeostasis and under the stress of an experiment"
- 1952 development of continuous human tumor cell line
 - HeLa
- Uses of cultured cells:
 - Development of antiviral vaccines
 - Production of monoclonal antibodies
 - Production of cell products
 - Insulin, HGH, interferon
 - Understanding of neoplasia

Cell Culture

- Benefits
 - Can carefully control environment
 - Preservation
 - Avoid using animals
 - Rapid, relatively cheap
- Disadvantages/limitations
 - Expertise
 - Identification of cell type
 - Genetic & phenotypic instability
 - Quantity

Cell Culture-Types of Cells

- Primary culture
 - Cells isolated from tumors or organs
 - Non-immortalized
 - Replication limit \rightarrow senescence
- Immortalized cell lines
 - Have evaded senescence
 - Sources
 - Cancer ex, HeLa, A549
 - Stable expression of a gene which de-regulates cell cycle
 - Adenovirus E1 in HEK293
 - Telomerase

Primary cells – mouse embryonic fibroblasts

Cell Culture-Types of cells

• Adherent

Epithelial & fibroblast

- Non-adherent
 - Hematopoietic cells
 - Jurkat cells human T lymphocytes

Cell Culture Basics

- Growth media
 - DMEM, MEM, RPMI 1640
 - Amino acids, vitamins, glucose
 - Phenol red pH indicator
 - Serum FBS, FCS, BS
 - Proteins & polypeptides, growth factors, amino acids, lipids, carbohydrates, polyamines, urea, inorganics, hormones, vitamins
 - Contains <u>antitrypsin activity</u>

Thai et al, 2014

Cell Culture Basics – adherent cells

- Plates/flasks
 - "Tissue culture treated"
 - Plates are made of polystyrene which is hydrophobic
 - TC treatment (many types) → make surface hydrophilic/negatively charged
 - Cell adhesion proteins (ex, vitronectin & fibronectin) can coat plate

Cell Culture basics – adherent cells

- Subculturing
 - Trypsin/EDTA
 - Trypsin
 - Serine protease
 - Cleaves adhesion proteins (integrins)
 - Optimal activity at 37°
 - EDTA
 - Chelating agent Calcium & Magnesium
 - Neutralize with complete (serum-containing) medium

Aseptic Technique

- Cell culture must be kept sterile
- Free of microorganisms
 - Bacteria
 - Fungi
 - Viruses
- Aseptic technique designed to create a barrier between the sterile cell culture & microorganisms in the environment
 - Sterile work area
 - Good personal hygiene
 - Sterile reagents & media
 - Sterile handling

Summary I

- Cell & molecular techniques allow scientists to examine subcellular components
- Each experiment should include positive & negative controls
- Measurements can be qualitative or quantitative
- Technical replicates ensure consistency within an experiment; biological replicates provide confidence in experimental results
- DNA may be extracted using phenol/chloroform or (for plasmids) alkaline lysis

Summary II

- PCR allows us to amplify pieces of DNA or cDNA
- Western blotting allows detection of proteins within cells or tissue
- Densitometry enables quantification of otherwise semi-quantitative data through analysis of image pixel intensity
- Cell culture is a way to study cells in the laboratory
- Aseptic technique is critical in cell culture

Thank you! Questions???