Hallmarks of Cancer

Hayley Affronti
PhD Student
9/6/16
What is Cancer? What are the Hallmarks?

- Normal body cells which begin to divide without stopping and can spread into surrounding tissues
- The hallmarks of cancer are the distinctive and complementary capabilities that enable tumor growth and metastatic dissemination
- In other words... The characteristics that make cancer, cancer.
The Hallmarks of Cancer

Douglas Hanahan* and Robert A. Weinberg†
*Department of Biochemistry and Biophysics and
Hormone Research Institute
University of California at San Francisco
San Francisco, California 94143
†Whitehead Institute for Biomedical Research and
Department of Biology
Massachusetts Institute of Technology
Cambridge, Massachusetts 02142

evolve progressively from normalcy via a series of pre-
malignant states into invasive cancers (Foulds, 1954).
These observations have been rendered more con-
crete by a large body of work indicating that the gen-
omes of tumor cells are invariably altered at multiple
sites, having suffered disruption through lesions as sub-
tle as point mutations and as obvious as changes in
chromosome complement (e.g., Kinzler and Vogelstein,
1996). Transformation of cultured cells is itself a
multistep process; rodent cells require at least two intra-

Hallmarks of Cancer: The Next Generation

Douglas Hanahan¹,²,* and Robert A. Weinberg³,*
¹The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne CH-1015, Switzerland
²The Department of Biochemistry & Biophysics, UCSF, San Francisco, CA 94158, USA
³Whitehead Institute for Biomedical Research, Ludwig/MIT Center for Molecular Oncology, and MIT Department of Biology, Cambridge,
MA 02142, USA
*Correspondence: dh@epfl.ch (D.H.), weinberg@wi.mit.edu (R.A.W.)
DOI 10.1016/j.cell.2011.02.013
Oncogene and Tumor Suppressor Genes

• **Oncogene**: mutated forms of normal cellular genes generally involved in promoting cell proliferation. These mutations result in dominant gain of function.

• **Tumor suppressor**: genes whose normal function in regulating proliferation is to stop it. Mutation results in recessive loss of function.
Tumor Heterogeneity
Sustaining Proliferative Signalling: Masters of their Own Destinies!

- Normal cells carefully control growth and division
- Cancer cells deregulate these signals
- How do tumors deregulate this?

http://www.labbookpages.co.uk/research/bioNode.html

Nikiforov Y., Nature Endocrinology 2011
Evading Growth Suppressors

• Circumventing programs which negatively regulate cell proliferation

• What are these programs?
 – Apoptosis
 – Senescence
 – DNA damage response
 – Cell cycle inhibition
 – Contact inhibition
Key Players in Growth Suppression

• TP53: Senses the need to halt cell cycle progression and can trigger apoptosis
 – >50% of tumors have mutation
 – Li-Fraumeni Syndrome: ~50% chance of developing cancer by age 30

• RB: Gatekeeper of cell cycle progression
Resisting Cell Death

• What are forms of cell death?
 – Apoptosis
 – Autophagy
 – Necrosis

• How do tumors resist cell death?
 – Loss of p53
 – Increase anti-apoptotic
 – Decrease pro-apoptotic

Kulbacka J., Intech 2012
Autophagy and Necrosis

• Autophagy: Enables cells to break down cellular organelles, and recycle them for biosynthesis and energy metabolism

• Necrosis: Release contents into local tissue microenvironment (including proinflammatory signals)
Enabling Replicative Immortality

• Cancer cells must have unlimited replicative potential
• Normal cells pass through a limited number of successive cell growth-and-division cycles
• Cells must overcome senescence and crisis
Telomeres: the good and the bad

- Short tandem repeats which protect the ends of chromosomes, and are shortened upon cell division
- Telomerase adds telomeres to the ends of telomeric DNA

Sahin E. and DePinho R., Nature 2010
Inducing Angiogenesis

- Tumors require oxygen, nutrients, and the ability to evacuate metabolic wastes and CO$_2$
Activating Invasion and Metastasis

Step 1: Physical Dissemination of cancer cells from primary tumor to Distant Tissues
Step 2: Adaptation of these cells to foreign tissue microenvironments, successful colonization
Activating Invasion and Metastasis

Interconnection of the Hallmarks
Emerging Hallmarks

- Deregulating cellular energetics
- Avoiding immune destruction
- Genome instability and mutation
- Tumor-promoting Inflammation

Enabling Characteristics
Genome Instability and Mutation

• Acquisition of the hallmarks in part depends on genomic alterations

• This may be acquired through...
 – Clonal selection
 – DNA methylation
 – Histone modifications

• Alterations in DNA maintenance machinery
Tumor Promoting Inflammation

• Immune cells are present in tumors at various densities

• Inflammation can contribute to multiple hallmarks by supplying bioactive molecules to the tumor microenvironment, including growth factors and survival factors
Reprogramming Energy Metabolism

• The Warburg Effect: Cancer cells reprogram their glucose metabolism, by limiting their energy production largely to glycolysis

• Divert glycolytic intermediates to other biosynthetic pathways to make macromolecules and organelles
Evading Immune Destruction

• Cells and tissues are under constant surveillance by the immune system
• Mice lacking NK and T cells were more susceptible to cancer development
• Patients with higher CTLs and NK cells have a better prognosis
The Hallmarks and Therapies
Do you feel that one hallmark is more important than the other?
Thank you!
Comments/Questions?