T Cell Immunity

Scott I. Abrams, Ph.D. Professor of Oncology Department of Immunology Roswell Park Cancer Institute

scott.abrams@roswellpark.org

December 8, 2016

<u>B Cells vs. T Cells: Which arm of the immune</u> system is likely to be more relevant for anti-viral or anti-tumor responses?

- recognition of *extracellular* versus intracellular pathogens
 - B cells produce antibodies which bind to circulating pathogens or toxins, leading to 'neutralization' of pathogenic activity
 - T cells, in contrast, directly bind to abnormal cells (i.e., infected or neoplastic), leading to target cell destruction

The Central Players of the T Cell Response

- CD8⁺ cytotoxic T lymphocytes (CTLs)
- CD4 $^+$ T_h1 (induces the generation of CTLs)
- CD4 $^{+}$ T_h2 (promotes antibody production)

Role of the Antigen Presenting Cell in the Activation of Naïve T Cells

Dendritic cells are essential for the induction of the $\underline{\text{naïve}}\ T$ cell response, and do so through regulation of three major events known as the 3-signal model:

- 1. Recognition of MHC-peptide complex (& conjugate
 - formation)

 - i. antigen processing ii. antigen presentation iii. co-receptors (CD4 or CD8) iv. adhesion (LFA-1/ICAM-1; CD2/LFA-3)
- 2. positive co-stimulation (CD28/CD80 or CD28/CD86)
- 3. cytokine production (e.g., Interleukin-2; IL-2)

Summary: The Generation of MHC-Peptide Complexes for T Cell Receptor Recognition

- 1 MHC class I and class II molecules deliver peptides to the cell surface from two distinct intracellular compartments.
- 2 Peptides presented by MHC class I molecules are generated within the cytosolic compartment (aka, endogenous pathway)
- Peptides presented by MHC class II molecules are generated in acidified endocytic vesicles (aka, exogenous pathway).
- 4 Cross-presentation allows exogenous proteins to be presented on both MHC class I and II molecules (i.e., via dendritic cells, which are highly effective).
- 5 CD8⁺ T cells recognize MHC class I-peptide complexes
- 6 CD4+ T cells recognize MHC class II-peptide complexes

Tumor Development and Progression

- >Intrinsic mechanisms
 - >genetic and epigenetic alterations within normal organs or tissues

Cell Type	Effect on Tumors	References
Normal epithelial cells	Inhoe	Dong-Le Bourtris et al., 1897
Mycepithetal cells	inhibit onvasion, growtho	Gutjoneson et al., 2002; Hu et al., 2008
Fibroblaste	promote (proliferation, anglogenesis, invasion)	Bhowmick et al., 2004; Olumi et al., 1999; Onmo et al., 2005
Mesenchymal stem cells	promote (metastasis)	Kamoub et al. 2007
Adpocytes	promote (tumor growth, survival, anglogenesis)	lyingar et al., 2005; Landskroner-Eiger et al., 2008
Endothelial cells	promote (angiogenesis, niche?)	Auspruck and Folkman, 1977; Calabrase et al., 2007
Perivasoular celts	promote (vascularization)	Bong et al. 2005
	inhibit (metastasis)	Xian et al., 2006
Bone mampe-derived cells	promote (proliferation, invasion, anglogenesis)	Coussens et al., 2000; Du et al., 2008; Lyden et al., 2001
Dendritio cells	inhibit (stimulate antitumor (menunity)	Knight et al., 1985; Mayordomo et al., 1995
Myeloid-derived suppressor cells and immature myeloid cells	promote (anglogenesis, metastasis, reduce antitumor immunity)	De Palma et al., 2005; Sinha et al., 2007; Yang et al., 2004; 2008b
Macrophages, M1-like	ivhinit .	Binha et al., 2005
Macrophages M2-like	promote (Invasion, angiogenesis)	Deltardo et al., 2009; Lin et al., 2001, 2006
Mast cells	promote (anglogenesis)	Coussens et al., 1999, Soucek et al., 2007; Yang et al., 2008a
seutrophile. N1	inhibit (stimulate antitumor immunity)	Fridlender et al., 2009
Neutrophile, N2	promote (angiogenesis, reduce antitumor immunity)	Nozawa et al., 2008; Schmieteu and Finn, 200 Shojaei et al., 2008
Toels, CD4' Theber 2	promote (metestasis)	Dehlardo et al., 2009
T cells, CD8', cytotosie	(vhibit (tumorioidal)	Romero et al., 1998
T cells. CD4"CD25" regulatory	promote (reduce antitumor immunity)	Casares et al. 2003: Curtel et al., 2004
T cells, gamma/delta	inhibit (stimulate antitumor immunity)	Giranti et al., 2001
T cels, Th17	promote (proliferation, anglogenesis)	Numasaki et al. 2005
	inhibit (stimulate T-cell antitumor immunity)	Hirshara et al., 2001
8 cells	promote (reduce antitumor immunity)	Incur et al., 2008
8 cella, immunogiobulina	promote (stimulate inflammation-associated progression)	Andres et al., 2010
Platelets	promote (metastasia)	Camerer et al. 2004 Neewandt et al. 1999

Approaches for the Treatment of Human Cancer

- > Surgery to debulk; effective if cancer has not spread
- > Radiation local/regional tumor spread
- Chemotherapy systemic spread, but approaches are generally toxic to normal cells/tissues (limits its therapeutic potential)

Immunotherapy: A Fourth Modality?

- > Immunotherapy principles:
 - > improve patient's immune response against their own cancer
 - 'vaccines'
 - > 'adoptive cell transfer'

➤ rationale and goals:

- ➤ a highly potent immune reaction
- > target cancer cells with high specificity
- > diminish toxicity toward normal cells

17

<u>Metastatic Disease is a Major</u> <u>Challenge in Cancer Treatment</u>

- Most cancer patient deaths are due to metastatic disease or disease resistant to conventional treatments
- Metastasis typically is not accessible to surgery because it can give rise to many lesions at multiple locations, some of which can be small and undetectable

18

<u>Manipulation of T Cell Responses for</u> <u>Therapeutic Purposes in Cancer</u>

Based on basic biology to clinical practice...

- 1. <u>Signal 1</u>: dendritic cell vaccines expressing relevant MHC/peptide complex (e.g. 'Provenge' in prostate cancer)
- 2. <u>Signal 2</u>: 'immune checkpoint inhibitors' to prevent negative costimulation (anti-CTLA-4 or anti-PD-1 mAbs)
- 3. Signal 3: IL-2 administration
- Adoptive T cell transfer of *ex vivo*-expanded tumor-infiltrating lymphocytes

