

Photodynamic Therapy

Laurie Rich, PhD

Laurie.Rich@roswellpark.org

716-845-6492

Laboratory of Dr. Mukund Seshadri Mukund.Seshadri@roswellpark.org 716-845-1552

Photodynamic Therapy (PDT)

- Food and Drug Administration (FDA) approved treatment for a variety of oncologic and non-oncologic conditions originally developed at Roswell Park (*Dougherty, 1974*).
- Involves photoactivation of a tissue-localized drug by light of a specific wavelength.

T.J. Dougherty (1974)@Roswell Photo-destruction of cells *in vitro* by fluorescein

While using a technique called "vital staining" to test the toxicity of an ionizing sensitizer he had made, Dougherty accidentally discovered that when cancer cells that contained the vital stain (fluorescein diacetate) were exposed to room light, they died.

History of PDT

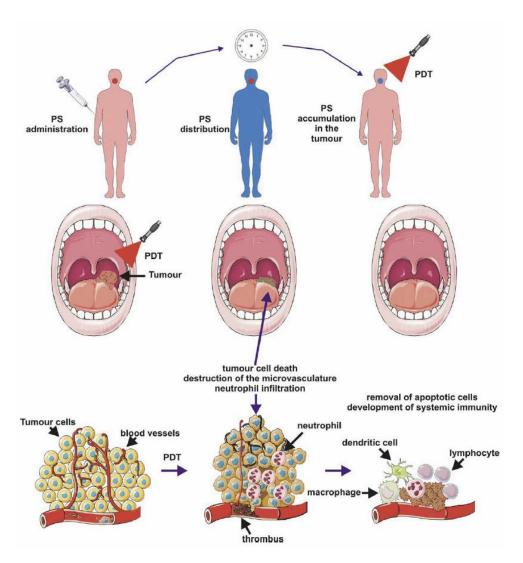
- Oscar Raab (1900) - medical student in Munich

Certain wavelengths of light were lethal to paramecia that

were exposed to acridine orange.

Professor Hermann Von Tappeiner

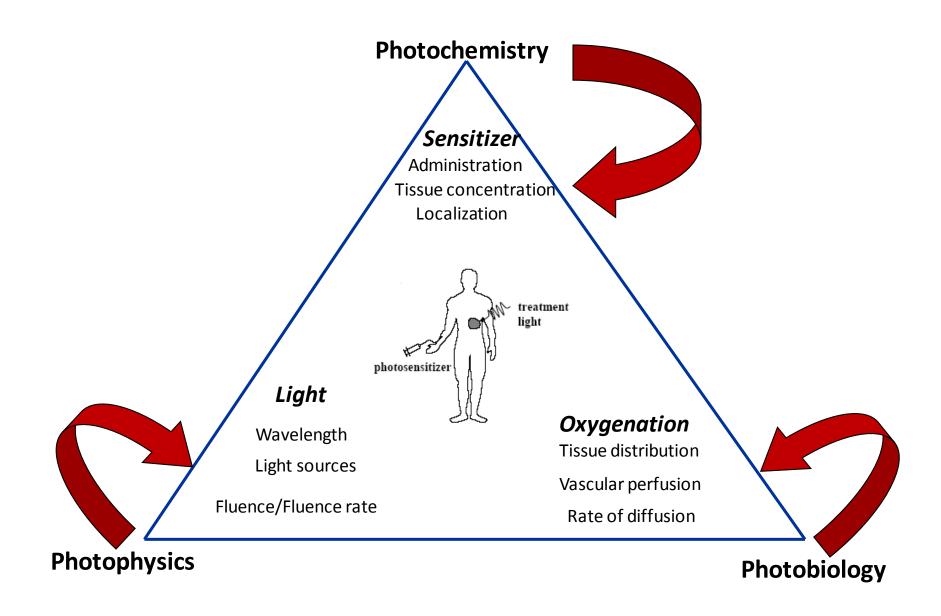
 'photodynamic action'
 Used eosin for treatment of skin lesions



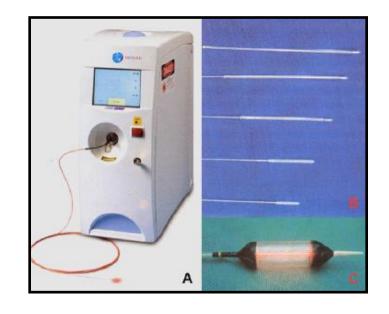
Before After

Tappeiner and Jesionek, 1903

HERMANN V. TAPPEINER

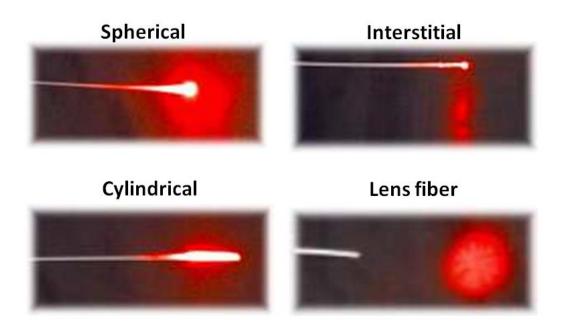

Basic principles of PDT

- Administration of a drug photosensitizer (PS)
- Localized activation


 (excitation) of the sensitizer in tissue by light of a specific wavelength
- Generation of highly reactive free radicals
- Oxidization of biological substrates causing cytotoxic effects within the illuminated tissue.

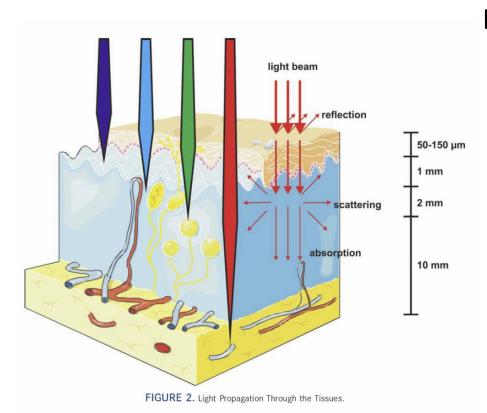
Photodynamic Triad

Photophysics


- Laser source is used to deliver monochromatic light through optical fibers
- Wavelength of activation generally corresponds to the absorbance maxima of the sensitizer used.

Longer wavelength sensitizers (~800 nm) are preferred

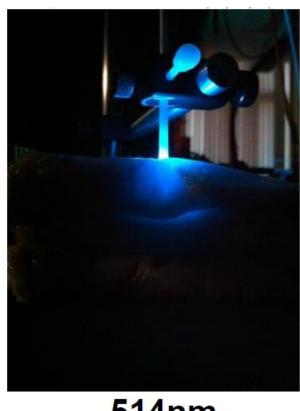
 Light sources – pumped dye lasers (bulky, inefficient), diode lasers (compact, portable, cost-effective)


Light delivery

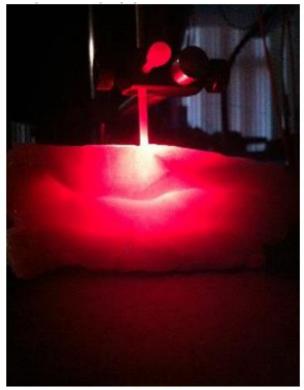
No single light source is <u>ideal</u> for all PDT applications even with the same PS

Choice of light source/delivery fiber depends on the disease site (location, size of lesions, access, tissue characteristics)

Photophysics



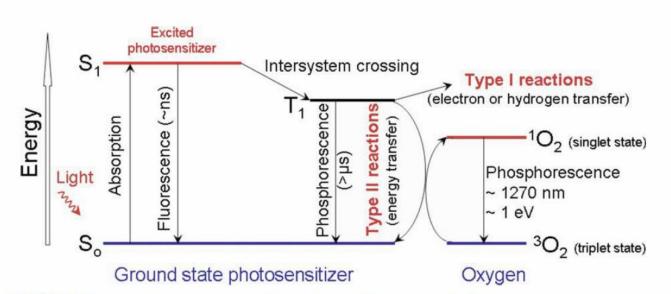
Blue light penetrates least efficiently through tissue, whereas red and infrared radiations penetrate more deeply.


600-1200 nm (tissue optical window)

Beyond 800 nm, there is insufficient energy for initiation of photodynamic reaction

Photophysics

514nm

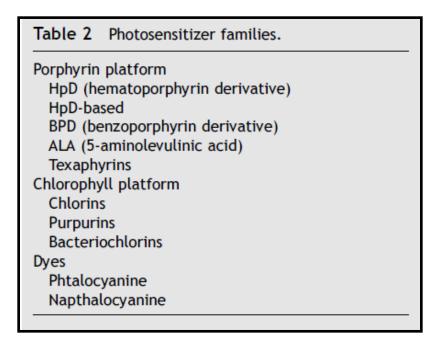


720nm

Light Dosimetry

- Defined by the fluence and fluence rate
- Fluence: Total amount of light dose delivered (J/cm²).
- <u>Fluence rate</u>: Rate at which the light dose is delivered (mW/cm²).
- The photochemical process associated with singlet oxygen generation is also oxygen-consuming.
- Biological response to PDT is critically dependent on the regimen employed

Biophysical Basis of PDT


FIGURE 3. Photosensitization Processes Illustrated by a Modified Jablonski Diagram. Light exposure takes a photosensitizer molecule from the ground singlet state (S_0) to an excited singlet state (S_1) . The molecule in S_1 may undergo intersystem crossing to an excited triplet state (T_1) and then either form radicals via a Type I reaction or, more likely, transfer its energy to molecular oxygen $(^3O_2)$ and form singlet oxygen $(^1O_2)$, which is the major cytotoxic agent involved in photodynamic therapy. ns indicates nanoseconds; μ s, microseconds; nm, nanometers; eV, electron volts.

The biological effects of PDT are a consequence of a dynamic interaction between the PS, light and tissue/molecular oxygen

Photosensitizers

Guidelines for 'ideal' photosensitizers

- Toxicity
- Activation
- High singlet oxygen yield
- Ease of administration
- Elimination
- Cost-effective

Increased interest in developing targeted photosensitizers

Photochemistry

PHOTOSENSITIZER	STRUCTURE	WAVELENGTH, nm	APPROVED	TRIALS	CANCER TYPES
Porfimer sodium (Photofrin) (HPD)	Porphyrin	630	Worldwide		Lung, esophagus, bile duct, bladder, brain, ovarian
ALA	Porphyrin precursor	635	Worldwide		Skin, bladder, brain, esophagus
ALA esters	Porphyrin precursor	635	Europe		Skin, bladder
Temoporfin (Foscan) (mTHPC)	Chlorine	652	Europe	United States	Head and neck, lung, brain, skin, bile duct
Verteporfin	Chlorine	690	Worldwide (AMD)	United Kingdom	Ophthalmic, pancreatic, skin
НРРН	Chlorin	665		United States	Head and neck, esophagus, lung
SnEt2 (Purlytin)	Chlorin	660		United States	Skin, breast
Talaporfin (LS11, MACE, NPe6)	Chlorin	660		United States	Liver, colon, brain
Ce6-PVP (Fotolon), Ce6 derivatives (Radachlorin, Photodithazine)	Chlorin	660		Belarus, Russia	Nasopharyngeal, sarcoma, brain
Silicon phthalocyanine (Pc4)	Phthalocyanine	675		United States	Cutaneous T-cell lymphoma
Padoporfin (TOOKAD)	Bacteriochlorin	762		United States	Prostate
Motexafin lutetium (Lutex)	Texaphyrin	732		United States	Breast

Abbreviations: ALA, 5-aminolevulinic acid; AMD, age-related macular degeneration; Ce6-PVP, chlorin e6-polyvinypyrrolidone; HPD, hematoporphyrin derivative; HPPH, 2- (1-hexyloxyethyl)-2-devinyl pyropheophorbide-a; MACE, mono-(L)-aspartylchlorin-e6; mTHPC, m-tetrahydroxyphenylchlorin; nm indicates nanometers; SnEt2, tin ethyl etiopurpurin.

Photochemistry

Porphyrins

- Useful sensitizers, high singlet oxygen yield, absorption in the visible spectrum

Photofrin®

- combination of monomers, dimers & oligomers derived from chemical manipulation of Hp, 630 nm absorption

Photofrin (n = 1-9)

Photofrin

- 1st photosensitizer to be approved by the FDA
- Approved indications in endobronchial and lung cancers, Barrett's esophagus
- *Limitation*: Prolonged cutaneous sensitivity

1972 1st experiment

Photochlor

Photosensitizer: HPPH

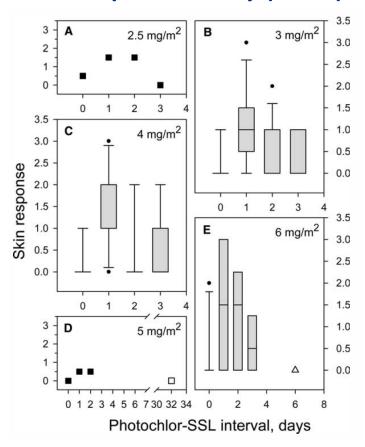
2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a) (665 nm)

- Chlorin-based sensitizer Pandey et al., (1991)
- Significantly decreased photosensitivity than Photofrin in patients
- Currently undergoing clinical evaluation in head and neck and lung cancers

Photochlor

Study

45 patients


- •3,4,5 or 6 mg/m² HPPH
- •Up to 133 J/cm² solar-spectrum light (SSL) on 3 consecutive days after HPPH

Results

18% had no reaction to SSL

- •16% had strongest reaction obtained in the studyerythema w/o edema
 or blistering
- Response appears to be related to HPPH-dose

Skin phototoxicity (HPPH)

Photochlor, at clinically effective antitumor doses, causes only mild skin photosensitivity that declines rapidly over a few days.

Clinical PDT – Skin phototoxicity (HPPH)

Conclusions

90% of the subjects exposed to SSL 3 days after Photochlor infusion had responses that were less severe than those obtained with either the 1- or 2-day sensitizer-SSL interval.

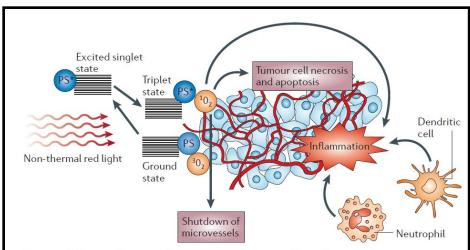
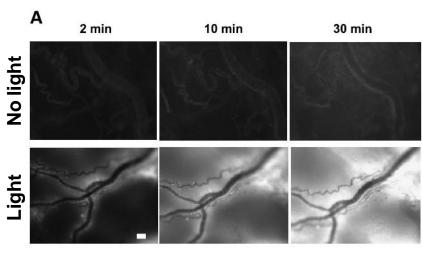
Photochlor, at clinically effective antitumor doses, causes only mild skin photosensitivity that declines rapidly over a few days.

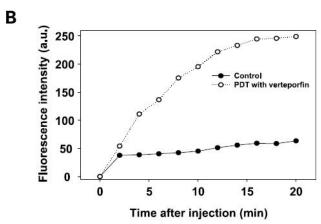
Cutaneous phototoxicity

0No reaction

- 1Minimal perceptible erythema, blotchy areas of faint erythema confined to the illuminated site
- 2Minimal erythema with sharp borders
- 3More pronounced erythema without edema
- 4Marked erythema with edema
- 5Marked erythema with edema and vesiculation

Biological response to PDT

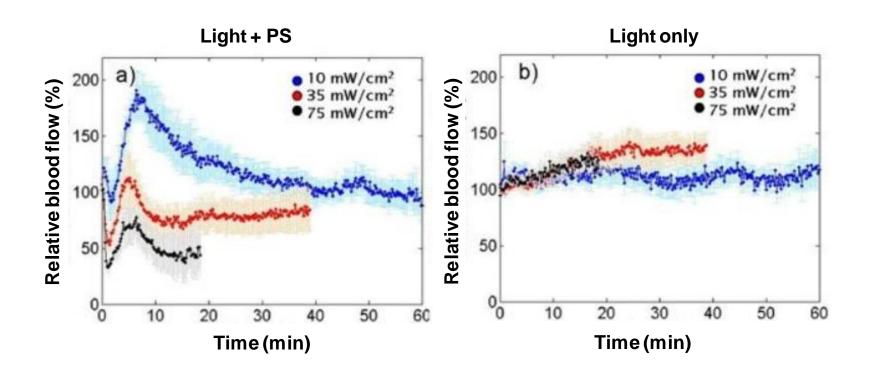




Figure 1 | The mechanism of action on tumours in photodynamic therapy. The photosensitizer (PS) absorbs light and an electron moves to the first short-lived excited singlet state. This is followed by intersystem crossing, in which the excited electron changes its spin and produces a longer-lived triplet state. The PS triplet transfers energy to ground-state triplet oxygen, which produces reactive singlet oxygen ($^{1}O_{2}$). $^{1}O_{2}$ can directly kill tumour cells by the induction of necrosis and/or apoptosis, can cause destruction of tumour vasculature and produces an acute inflammatory response that attracts leukocytes such as dendritic cells and neutrophils.

- Complex
- Combination of direct cytotoxicity, vascular damage and the induction of immune/inflammatory responses
- The efficacy of the photodynamic reaction depends on several parameters:
 - PS used
 - Light treatment conditions
 - Tissue oxygenation

Unlike tissue factors (vascularity/oxygenation), light treatment conditions are under the direct control of the clinician

Vascular response to PDT



- Increased vascular permeability
- Hemorrhaging
- Loss of perfusion (shutdown)

Depending on sensitizer and treatment conditions

Vascular response to PDT

Changes in blood flow can occur during treatment, and are impacted by fluence rate

Immune/inflammatory response to PDT

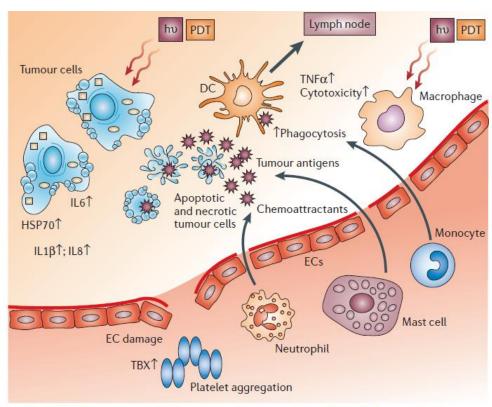


Figure 3 | Consequences of photodynamic therapy-induced inflammation. Damage to endothelial cells (ECs) activates a casade of events that lead to local inflammation, vessel dilatation and platelet aggregation. Much of this is caused by the release of thromboxane (TBX), cytokines such as interleukin 1 β (IL1 β), IL6 and IL8, the production of tumour-necrosis factor- α (TNF α), and infiltration of the treated tumour by cells of the immune system. Necrotic and apoptotic tumour cells express heat-shock proteins (HSPs) and provide antigens to dendritic cells (DCs) that migrate to lymph nodes. hv, light; PDT, photodynamic therapy.

- Prostaglandins
- Cytokines
- Chemokines
- Inflammatory cell infiltration (neutrophils and macrophages)

Clinical PDT

- ✓ Emerging as a viable clinical treatment for nearly every histological type/site.
 - * Head and neck cancers (Biel et al.,1998)
 - * Skin cancers (Oseroff et al., 2005).
 - * Intra-abdominal sarcomas (Hahn et al., 2006).

Haematoporphyrin derivative, polyhaematoporphyrin Porfimer sodium First approved in 1995; now approved in more than 40 countries First approved in 1995; now approved superficial gastric cancer, superficial gastric cancer, oesophageal adenocarcinoma, cervical cancer, and bladder cancer Methyl-tetrahydroxyphenyl Chlorin Temoporfin Approved in 2001 in European Union, Norway, and Iceland 5-aminolevulinic acid Aminolevulinic acid Approved in 1999 in USA Actinic keratosis Methyl 5-aminolevulinate Methyl aminolevulinate Approved in 2001 in Europe Actinic keratosis, superficial basal-cell	Generic name	Date and country of approval	Indications
chlorin Norway, and Iceland 5-aminolevulinic acid Aminolevulinic acid Approved in 1999 in USA Actinic keratosis Methyl 5-aminolevulinate Methyl aminolevulinate Approved in 2001 in Europe Actinic keratosis, superficial basal-cell	Porfimer sodium	· · · · · · · · · · · · · · · · · · ·	superficial gastric cancer, oesophageal adenocarcinoma,
Methyl 5-aminolevulinate Methyl aminolevulinate Approved in 2001 in Europe Actinic keratosis, superficial basal-cell	Temoporfin		Palliative head and neck cancer
	Aminolevulinic acid	Approved in 1999 in USA	Actinic keratosis
carcinoma, and basal-cell carcinoma	Methyl aminolevulinate	Approved in 2001 in Europe	Actinic keratosis, superficial basal-cell carcinoma, and basal-cell carcinoma
		Porfimer sodium Temoporfin Aminolevulinic acid Methyl aminolevulinate	Porfimer sodium First approved in 1995; now approved in more than 40 countries Temoporfin Approved in 2001 in European Union, Norway, and Iceland Aminolevulinic acid Approved in 1999 in USA

Clinical PDT

Advantages

- ✓ Equivalent or greater efficacy compared to standard therapies
- ✓ Reduced morbidity/disfigurement
- ✓ Can be repeated for large bulky tumors interstitial PDT
- ✓ Use of PDT is not precluded by prior/subsequent surgery or chemotherapy
- ✓ Excellent cosmetic outcome skin lesions, HNC
- ✓ PDT as an adjunct could eliminate residual disease

Skin Conditions

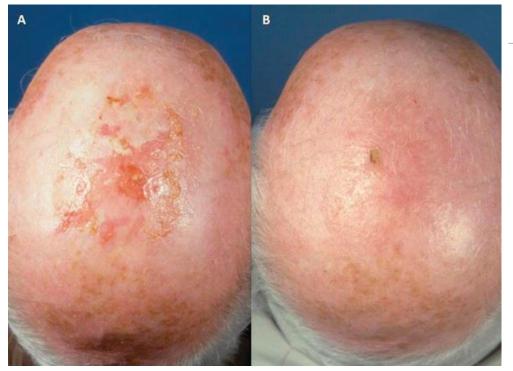


 Table 1. ALA preparations.

Product name	Ingredients
Metvix®	16% methyl-5-amino-4- oxopentanoate as hydrochloride
Levulan Kerastick® (not approved for clinical use in Europe)	20% aminolevulinic acid hydrochloride
Magistral preparation	20% ALA gel/cream/emulsion
PD P 506 A (photonamic GmbH & Co KG, Wedel, Germany) (not yet approved for clinical use)	5-ALA released from bandage
BF-200 ALA (Biofrontera AG, Leverkusen, Germany) (not yet approved for clinical use)	5-ALA nanoemulsion

Lung cancer

Endobronchial Lung Cancer

Advanced disease, palliative intent (airway obstruction)


TABLE 1. PDT for Palliation of Endobronchial Obstruction: Selected Studies

Reference	Patients (n)	Drug	Palliation	Complications
Kato, 1998 [43]	111	HPD	74%	Sunburn 21.5%
Balchum, 1984 [44]	22	HPD	m OR~21/22	Pneumothorax 9%,
				Pneumonia 13%
Lam, 1986 [45]	24	Photofrin	79%	None
Zwirewich, 1988 [22]	20	Photofrin	89% OR in patients with	None
			intraluminal tumor	
LoCicero, 1990 [46]	10	HPD	100% palliation of	Sunburn 20%
			symptoms	
Moghissi, 1993 [47]	15	Photofrin	RT plus PDT versus YAG	None
Moghissi, 1997 [27]	17	Photofrin	YAG plus PDT 100%	Sunburn 5.8%
			palliation of symptoms	
Dougherty, 2002 [25]	106	Photofrin	PDT superior to YAG at	Sunburn 20%
			1 month	
Diaz-Jimenez, 1999 [26]	31	Photofrin	PDT improved survival	Sunburn 28%
			over YAG	
Moghissi, 1999 [20]	100	Photofrin	100% palliation of	Sunburn 5%
			$symptoms^a$	
Jones, 2001 [30]	10	Photofrin	100%	None

OR, overall response rate (e.g., % relief of endobronchial obstruction).

^a, included small cell lung cancer cases.

Clinical PDT – Endobronchial lung cancer

Endobronchial obstruction of the distal left main bronchus not suitable for ND: YAG.

Close-up view of distal left main bronchus post-PDT, with erythema.

Following debridement, the left lung re-expanded and the patient was weaned from the ventilator within 24 hours.

Head and neck cancers

- Management often requires aggressive surgical intervention
- Morbidity issues speech, appearance and function
- Alternative Rx:
 - **PDT** could be of potential benefit
 - non-invasive
 - excellent cosmetic results
 - single/adjunct

Oral cancer

Clinical Cancer Research

Cancer Therapy: Clinical

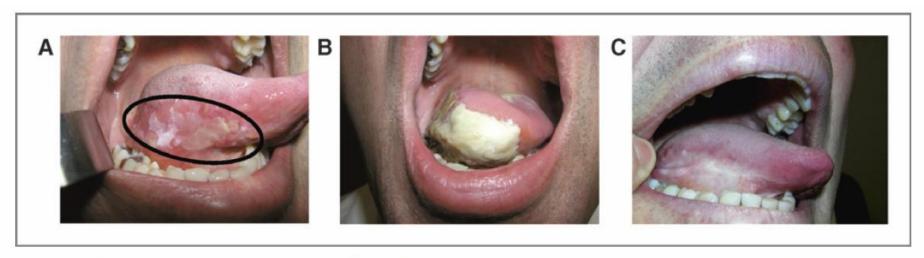


Figure 1. A, high grade dysplasia with microinvasion (within the ellipse) before therapy. B, response to PDT at 7 days posttreatment. C, complete clinical disappearance of the target lesion at 9 months after PDT.

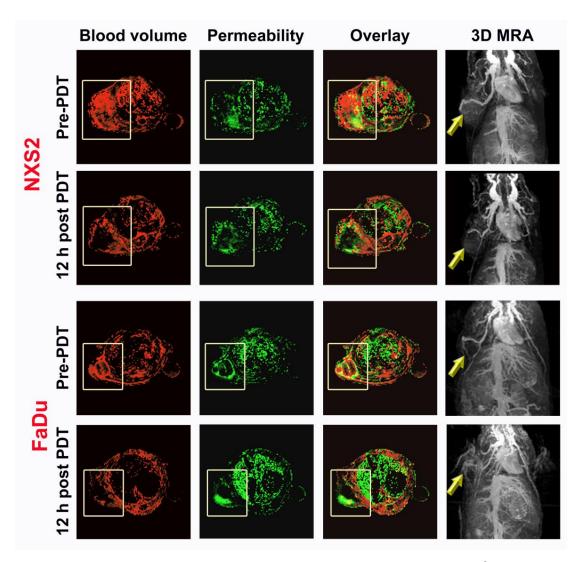
Combination strategies with PDT

TABLE 3. Combinations of PDT and Various Therapeutic Modalities in Cancer Treatment: A Comprehensive Summary

DRUG OR TREATMENT MODALITY	OUTCOME/RESULTS				
CHEMOTHERAPEUTICS AND NOVE	L ANTICANCER DRUGS				
Anthracyclines	clines Doxorubicin improves PDT-mediated tumor growth control in mice ¹⁰³				
Platinum compounds	Cisplatin potentiates antitumor activity of PDT in mice ¹⁰³				
Antimetabolites	Methotrexate enhances in vitro cytotoxicity of PDT with ALA by upregulation of protoporphyrin IX production 104				
Microtubule inhibitors	Vincristine administered prior to or immediately after PDT improves its antitumor activity in mice ¹⁰⁵				
DNA methyltransferase inhibitors	5-azadeoxycytidine prolongs survival of PDT-treated animals and improves tumor growth control 106				
Proteasome inhibitors	Bortezomib enhances PDT-mediated ER stress in cancer cells in vitro and significantly delays post-PDT tumor regrowth in mice ⁴⁸				
RADIOTHERAPY					
Two-way enhancement of antitur tumor growth control induced by	nor effects: PDT sensitizes cancer cells to radiotherapy ¹⁰⁷ and radiotherapy increases anticancer efficacy of PDT, ¹⁰⁸ prolonged combined treatment ¹⁰⁹				
DRUGS MODULATING ARACHIDO	NIC ACID CASCADE				
COX-2 inhibitors	COX-2 inhibitors (such as NS-398, ¹¹⁰ nimesulide, ¹¹¹ or celecoxib ¹¹²) potentiate antitumor effects of PDT, possibly threindirect antiangiogenic effects				
LOX inhibitors	MK-886, which also serves as a FLAP inhibitor, sensitizes tumor cells to PDT-mediated killing ¹¹³				
AGENTS INCREASING PS ACCUMU	JLATION IN TUMOR CELLS				
Vitamin D	Increases ALA-induced protoporphyrin IX accumulation and thus potentiates PDT cytotoxicity in vitro ¹¹⁴				
Imatinib	Increases intracellular accumulation of second-generation PSs and thus potentiates PDT cytotoxicity in vitro and in vivo ¹¹⁵				
Lipid-lowering drugs	Lovastatin, a HMG-CoA reductase inhibitor, improves in vitro LDL binding and porfimer sodium uptake by cancer cells ¹¹⁶				
Salicylate and related drugs	Enhancement of PDT efficacy in vitro via increased PS uptake by tumor cells ¹¹⁷				
APPROACHES INCREASING OXYG	EN DELIVERY TO TUMOR CELLS				
EPO	EPO improves chemotherapy-induced anemia and restores antitumor efficacy of PDT in mice ¹¹⁸ ; however, EPO might also inhibit direct PDT-mediated cytotoxicity toward certain cancer cells ¹¹⁹				

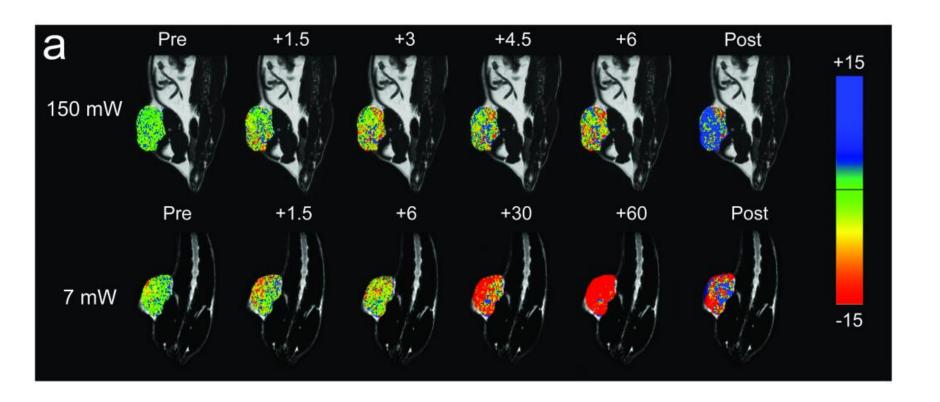
Limitations & Potential Solutions

X The FDA-approved sensitizer Photofrin[®] is associated with prolonged and sometimes severe cutaneous sensitivity in patients lasting for 1-2 months.

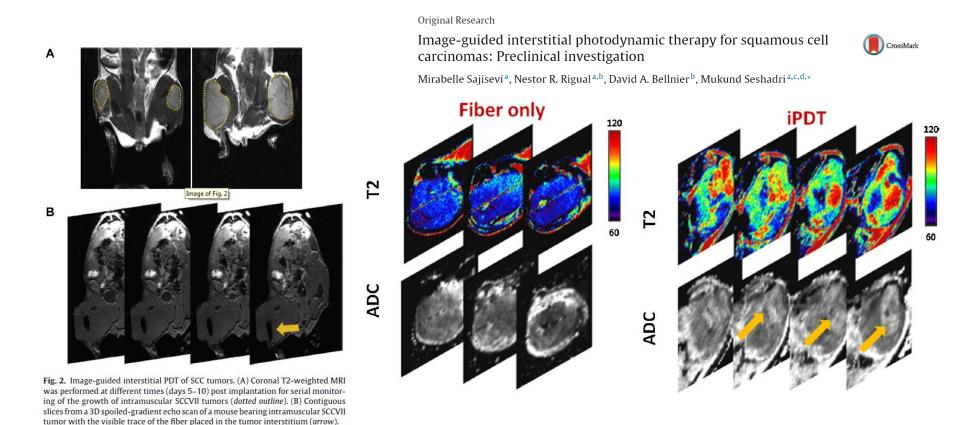

Develop newer sensitizers with decreased phototoxicity

X Improve therapeutic efficacy Combination strategies?

X Develop methods for detection/monitoring efficacy or activity How can imaging help in treatment planning/monitoring?

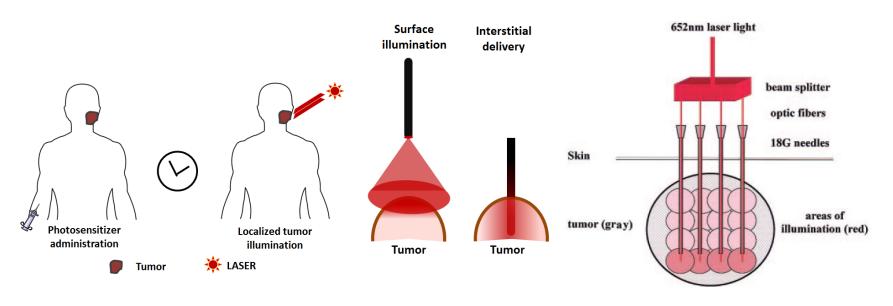


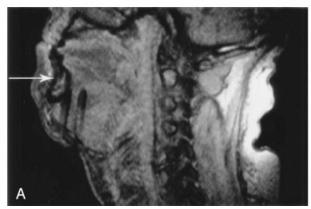
MRI of Vascular Response to PDT


Parametric maps and 3D MR angiography (MIP image)

MRI based real-time monitoring of PDT

Real-time monitoring of PDT efficacy using blood oxygenation level dependent MRI

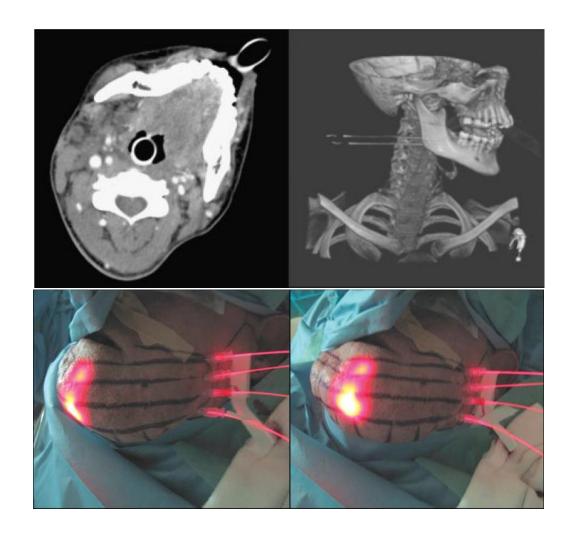

MRI-guided Photodynamic Therapy



Utility of MRI as a non-invasive tool to guide fiber placement and map early tissue response to PDT.

MRI-guided Photodynamic Therapy

Image-guidance interstitial PDT



Sajisevi et al., 2015 Jerges et al., 2008

Imaging-guided interstitial PDT

Imaging-guided interstitial PDT

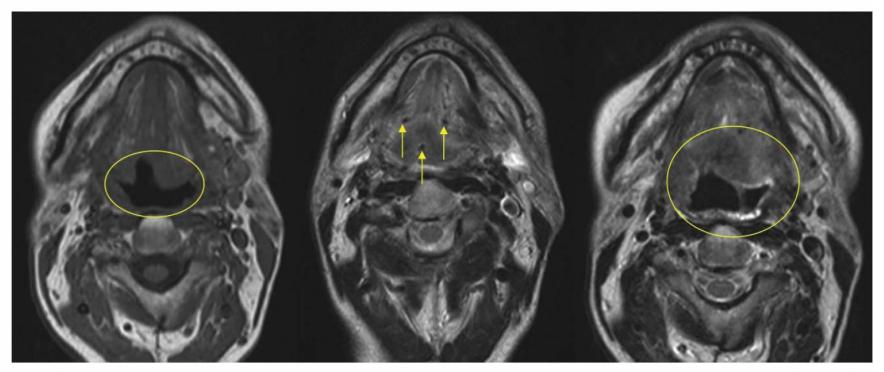
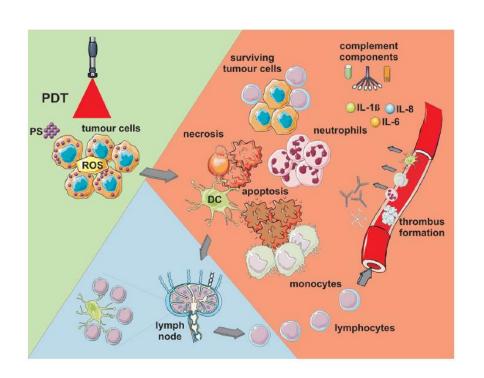



Figure 2: MRI Guided interstitial photodynamic therapy. Left image: preoperative MRI scan showing base of tongue tumour. Middle image: perioperative; arrows indicating needles placement for light delivery. Right image: postoperative scan revealing areas of necrosis and subsequent increase patency of airway.

Next Generation Strategies for PDT

- Alternative light delivery methods
 - 2-photon PDT (short laser pulses using high peak power)
- Modified time intervals of treatment
 - Metronomic PDT (lower drug/light doses, longer periods)
- Modifications of PS agents to enhance drug internalization (photochemical internalization)
- Nanoformulations
 - Drug combinations, targeting, enhanced delivery, and imaging

Concluding remarks

Understand basic principles
Basic components:
Photo-physics/chemistry
Biological response
Clinical indications/applications

PDT is a multidisciplinary endeavor (scientists, physicists, surgeons, radiologists, nurses)