The Pathology of Neoplasia

February 2018

PAUL BOGNER, MD

ASSOCIATE PROFESSOR OF ONCOLOGY
PATHOLOGY AND DERMATOLOGY
Outline and Objectives

What is Pathology?

What is a Pathology Department?

The pathologist’s “tools”

Pathology Definitions and Concepts

How do we approach a pathology specimen?

A General Classification of Neoplasia.

The ugly histologic face of cancer (recognizing malignancy).

Grading and Staging Malignancy.

The Changing World of Pathology

Pathology and Research
Clinical goals of cancer pathology

1. Identify presence of cancer
2. Classify cancer
3. Predict biology of cancer and prognosis
4. Identify optimal therapy
5. Evaluate success of treatment
Pathology

- “...branch of medicine which treats (studies) of the essential nature of disease, especially of the structural and functional changes in tissues and organs of the body which cause or are caused by disease.”
 - Dorland’s Medical Dictionary 24th Ed.
- “...something abnormal- the anatomic and physiologic deviations from the normal that constitute disease or characterize a particular disease.”
 - Webster’s Seventh New Collegiate Dictionary
A Department of Pathology

Patient Care
- ANATOMIC PATHOLOGY
- CLINICAL PATHOLOGY

Experimental (Research)
- TISSUE PROCUREMENT
- TRANSLATIONAL BENCH
Anatomic Pathology

- **Surgical Pathology**
 - Frozen Section (Intra-operative consultations)
 - Biopsy and Resection specimens

- **Cytopathology**
 - Pap smears (Gynecologic specimens)
 - Fine needle aspirates, washes, brushes

- **Autopsy**
Clinical Pathology

- Hematology
- Chemistry
- Microbiology
- Blood Bank (Transfusion Medicine)
- Tissue Typing (Transplant Pathology)
- Molecular Diagnostics
- Flow Cytometry
- Cytogenetics
Anatomic Pathology in Cancer

Patient has signs or symptoms of cancer

Clinician/Radiologist performs biopsy

Pathologist diagnoses cancer on biopsy

Clinician performs resection/excision

Pathologist stages and evaluates cancer

Molecular Characteristics of Tumor Evaluated for use in “Personalized Medicine”
The Pathologist’s Tools

- The “Grossing Station”

- Fixation (usually with Formalin- 37% formaldehyde)
 ○ Preserve tissue, enhance detail for microscopy

- Tissue Processing (usually overnight)
 ○ Remove tissue water gradually, replace with paraffin wax

- Paraffin Embed and cut tissue sections

- Hematoxylin and Eosin Stain

- The Light Microscope
Gross Examination
Cassettes and Tissue Sections
Tissue Processor

1. Dehydrate Tissue
 - Progressive series of alcohols removes water

2. Clear Ethanol with xylene

3. Replace with paraffin
Tissue Embedded in Liquid Paraffin

Pictures courtesy of www.protocolsonline.com
Sections Cut (~ 5 μm) by microtome
Hematoxylin and Eosin (the H&E)

• The pink and purple foundation of pathology

• Hematoxylin
 ○ Purple/blue stain (BASOPHILIC)
 ○ Stains acidic materials
 ○ Stains nuclear contents

• Eosin
 ○ Pink stain (EOSINOPHILIC)
 ○ Stains most cytoplasmic contents
Ancillary Studies

- Flow cytometry
- Immunohistochemical stains
- Cytochemical stains
- Cytogenetics
- Electron microscopy
Generic IHC Cell

Cytoskeleton
- IF-CK, Desmin, Vimentin, GFAP, NFP

Lymphoid
- CD2, 3, 4, etc.
- L26, CD30

Secretory Products
- cgl, AFP, HCG, PSA, Thy, IL

NSG
- NSE, Chromogranin, Synaptophysin, etc.

Misc. Surface Markers
- CD31, Factor VIII, CD71, CEA
- Her2-Neu

Nuclear Markers
- ER/PR, Ki-67, PCNA, p53, p21, bcl-2
- Apoptotic, Viral DNA, RNA

Adhesion Structures
- Desmosomes

BM
- Laminin
- Collagens
- ECM-MMP
- Fibronectin

Hemidesmosomes
- Collagen VII
- Anchoring Fibrils
Fig. 3-2 Biotin-avidin immunoenzymatic techniques. Solid semicircle indicates antigen; PX, peroxidase; *, biotin; and shaded open cross, avidin. A, biotinylated primary antibody method; B, biotinylated peroxidase method; C, avidin-avidin-peroxidase complex method. (From Falini B, Taylor CR: New developments in immunoperoxidase techniques and their application. Arch Pathol Lab Med 107:105-117, copyright 1983, American Medical Association.)
IHC: what is it good for?

- Identify or confirm the source of a tumor
 - CK7, CK20, other markers “specific” to tumor type

- Increase the sensitivity of tumor detection
 - eg find individual metastatic melanoma cells in a lymph node using Melan-A

- Predict tumor behavior/prognosis
 - proliferative index (Ki-67)

- Identify potential therapeutic targets
 - Estrogen receptor – Tamoxifen (breast cancer)
FIGURE 1. Approach to immunohistochemical markers used in unknown primary cancer.
Additional Markers Used as Suggested by Clinical Data (after a Preliminary Workup with CK7 and CK20)

<table>
<thead>
<tr>
<th>Tumor</th>
<th>Marker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urothelial carcinoma</td>
<td>UROIII, THR, HMWCK</td>
</tr>
<tr>
<td>Breast carcinoma</td>
<td>GCDFP-15, ER, PR</td>
</tr>
<tr>
<td>Lung (mainly adenocarcinoma)</td>
<td>TTF-1, surfactant A and B</td>
</tr>
<tr>
<td>Medullary thyroid carcinoma</td>
<td>TTF-1, Calcitonin</td>
</tr>
<tr>
<td>Merkel cell carcinoma</td>
<td>CD117</td>
</tr>
<tr>
<td>Hepatocellular carcinoma</td>
<td>Hep par-1</td>
</tr>
<tr>
<td>Prostate carcinoma</td>
<td>PSA, PAP</td>
</tr>
<tr>
<td>Cholangiocarcinoma</td>
<td>CK19</td>
</tr>
<tr>
<td>Mesothelioma</td>
<td>Calretinin</td>
</tr>
</tbody>
</table>

from Varadhachary, GR. et al., Cancer 100(9):1776 (2004).
Breast Cancer Metastatic to Uterus

MAMMAGLOBIN IHC STAIN
Immunohistochemistry

- **DISADVANTAGES**
 - **FALSE Negative**
 - Antigen- not present in tissue, degraded
 - Antibody- too dilute, expired, wrong antibody
 - **FALSE Positive**
 - Cross reactive or non-specific antibody binding
 - Endogenous peroxidase or avidin/biotin binding
 - Entrapped normal cells
 - Tumor uptake of normal cell antigens
Definitions and Concepts
Definitions

- **TUMOR**
 - Swelling.

- **CANCER**
 - “crab”, tumor with fatal course and association with formation of secondary tumors (metastasis)
 Definitions

• **EPITHELIUM** (epithelial) ➔ when malignant it is called **CARCINOMA**

 Derived from ectoderm or endoderm: the protective, absorptive and secretory lining of the body both externally (e.g. skin), and internally (e.g. lining of colon, pancreatic glands)

 Common types of epithelium are: squamous and columnar/glandular
Epithelium and Basement Membrane
Definitions

- **MESENCHYME** (mesenchymal) ➔ when malignant it is called **SARCOMA**

Largely derived from mesoderm: structural and functional elements of the body—“connective tissue” (cartilage, bone, collagen, nerve, blood vessels, etc...)
Definitions

- NEOPLASIA

 Any new or abnormal growth (typically implies a clonal population of cells).

- NEOPLASM

 Mass of new tissue which persists and grows independently of its surrounding structures and which has no physiologic use.
Definitions

- **METAPLASIA**
 A change in tissue cells to a form not normal for that tissue, usually reversible and protective

- **HYPERPLASIA**
 An increase in the NUMBER of cells, while maintaining normal tissue architecture
Normal esophagus Barrett’s metaplasia

Images taken from WWW: “The GastroLab Endoscopy Archive”
Metaplasia (Barrett’s Esophagus)
• **INVASION**

The penetration of neoplastic epithelial cells through the basement membrane.

Also used less specifically to refer to cells (epithelial or mesenchymal) penetrating any adjacent existing structure.
Invasion (Squamous Cell Carcinoma)
Definitions

• **DIFFERENTIATION**

Degree to which a neoplasm recapitulates normal tissue in all its characteristics (often assessed as a GRADE)
Well Differentiated Lung Adenocarcinoma (Bronchioloalveolar Carcinoma 200x)
Poorly differentiated lung adenocarcinoma (200x)
Definitions

- **ATYPIA**

 The condition of being irregular, refers generally to abnormalities of histologic appearance- not always neoplastic in nature (can be “reactive”, as in setting of radiation therapy or inflammation)

- **ANAPLASIA**

 A loss of normal differentiation and form.
Definitions

- **DYSPLASIA**

 Abnormality of maturation and development, manifesting as architectural, organizational and cytologic atypia

 MILD \rightarrow MODERATE \rightarrow SEVERE
 (SEVERE usually is **Carcinoma in-situ**)

 DYSPLASIA IS ALWAYS ATYPICAL, ATYPIA IS NOT ALWAYS DYSPLASTIC!
Colonoscopy
Colonic Adenoma (Dysplasia 100x)
Colonic Adenoma (Dysplasia 200x)
• **PLEOMORPHISM**

Variation in cellular size and shape

• **MALIGNANT**

A neoplasm with invasive and metastatic capacity.
Pulmonary Neuroendocrine Carcinoma

Carcinoid (400x)
LOW GRADE, MINIMAL TO NO ATYPIA
MONOMORPHIC

Small Cell Carcinoma (400x)
HIGH GRADE, SEVERE ATYPIA
PLEOMORPHIC
NEC: Small Cell Carcinoma (400x)
Beware: gross photos ahead

APPROACHING A PATHOLOGIC SPECIMEN.
Approaching a pathologic specimen

- **GROSS APPEARANCE**
 - “dissect” and describe the specimen
 - Take carefully selected portions of tissue for subsequent examination under the microscope

- **MICROSCOPIC APPEARANCE**
 - Routine Hematoxylin and Eosin stained slides
 - Special histologic techniques (stains, immunohistochemistry)
Gross Specimen...

Hepatocellular Carcinoma
Another Gross Specimen

Adenocarcinoma of colon
Approaching a pathologic specimen

- Is there pathology present?
- What is the general nature of the pathology?
 - Infectious, neoplastic, inflammatory/autoimmune
- If it IS neoplastic, what parameters must be collected?
 - Benign or malignant?
 - Tumor type, grade, stage, resection margin status
General Types of Neoplasia

- EPITHELIAL (eg. Carcinoma)
 - Generally derived from ectoderm or endoderm

- MESENCHYMAL (eg. Sarcoma)
 - Generally derived from mesoderm (neural tissue is an exception → it’s ectodermal)

- HEMATOPOEITIC (eg. Lymphoma)
 - Generally derived from mesoderm

- MIXED (eg. Carcinosarcoma)

- OTHER (eg. Germ cell tumor)
Epithelial Tumors

adenoma
papilloma
carcinoma
etc
Carcinoma

- Malignant tumor of epithelium

- Comes in different types depending on origin:
 - Squamous cell carcinoma
 - Adenocarcinoma (glandular)
 - Neuroendocrine carcinoma

- Sometimes preceded by a pre-invasive lesion: severe dysplasia (carcinoma *in-situ*)
Adenocarcinoma of Lung
Normal Bronchial Epithelium (400x)

Bronchial Squamous Metaplasia (200x)

Severe Bronchial Squamous Dysplasia/Carcinoma in-situ (200x)
Invasive Squamous Cell Carcinoma (400x)
Carcinoma

- One hallmark of an epithelial neoplasm is cellular expression of cytokeratin (CK) intermediate filaments.

- Cytokeratin expression profile can also help identify the primary site/source of a carcinoma (immunohistochemistry):
 - CK 7, CK 20, CK 5/6
Mesenchymal tumors

- OMA
- SARCOMA
Mesenchymal tumors

- Tumors of connective/mesenchymal tissue

Named according to their putative origin and differentiation:

<table>
<thead>
<tr>
<th>Tissue Type</th>
<th>Malignant</th>
<th>Benign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smooth muscle</td>
<td>leiomyosarcoma</td>
<td>leiomyoma</td>
</tr>
<tr>
<td>Skeletal muscle</td>
<td>rhabdomyosarcoma</td>
<td>rhabdomyoma</td>
</tr>
<tr>
<td>Blood vessels</td>
<td>angiosarcoma</td>
<td>angioma</td>
</tr>
<tr>
<td>Cartilage</td>
<td>chondrosarcoma</td>
<td>chondroma</td>
</tr>
<tr>
<td>Bone</td>
<td>osteosarcoma</td>
<td>osteoma</td>
</tr>
<tr>
<td>Adipose (fat)</td>
<td>liposarcoma</td>
<td>lipoma</td>
</tr>
</tbody>
</table>
Chondrosarcoma (Humerus)
Mesenchymal Tumors

• *Usually* express the intermediate filament *vimentin*, and NOT cytokeratins

• May also express markers of differentiation:

 Smooth Muscle → smooth muscle actin
 Nerve → S100
 Vascular → Cluster of Differentiation 31 (CD31)
Hematopoetic Neoplasia

leukemia
lymphoma
Hematopoetic Neoplasia

• Derived from bone marrow cells (red, white)

• **Lymphoma** (cells usually involve lymph node or other lymphoid tissue like spleen)
 - T-cell (CD3+, CD20-)
 - B-cell (CD20+, CD3-)
 - NK cell (CD56+)

• **Leukemia** (cells circulate in blood)
 - Myeloid (acute or chronic)
 - Lymphoid (acute or chronic)
MALT Lymphoma (400x)
Origin of B-cell lymphoma

Figure from: Lymphoma: Methods and Protocols, Methods in Molecular Biology. Volume 971. R. Kuppers (ed.), Springer 2013
Simplified IHC small B-cell lymphoma

- CD20+
 - Bcl-6+
 - Follicular
 - Bcl-6-
 - CD5+
 - CD23+
 - SLL
 - CD5-
 - CD23-
 - Bcl-1+
 - Mantle Cell
 - Marginal Zone
So how do we know if a bunch of cells is benign or malignant?
Recognizing Malignancy

1. Architecture and Behavior
2. Proliferation (mitotic rate, antigenic markers)
3. Necrosis
4. Cytology (nuclear and cytoplasmic)
Recognizing Malignancy

- **Architecture and behavior**
 - How closely does tumor resemble normal tissue?
 - What is the contour of the tumor?
 - Is there invasion of adjacent tissue?
 - Is there invasion of blood vessels or nerves?
 - Does it have a capsule?
Mammogram of Ductal Carcinoma
BENIGN

- Organized
- Well circumscribed
- No infiltration of adjacent tissue.
- Normal stroma
MALIGNANT

- Disorganized.
- Poorly circumscribed.
- Infiltrates adjacent fat.
- Desmoplastic stroma.
Recognizing Malignancy

- **Proliferative Rate**
 - What is the mitotic count? (number of mitoses per 10 high-power 400x microscopic fields)
 - Are mitoses normal in form?
 - What is the percentage of cells expressing markers of proliferation? (Ki-67/Mib-1)

- **Necrosis**
 - Is there tumor necrosis? (function of rapid uncontrolled proliferation, loss of cell cycle control)
Hepatocellular Carcinoma with Necrosis
Hepatocellular Carcinoma with Mitosis
Recognizing Malignancy

- Cytology (a function of rapid proliferative rate and abnormal, active cellular “machinery”)
 - What is the character of the nuclear chromatin?
 - Are there abnormal nucleoli present?
 - What is the contour of the nuclear membrane?
 - What is the nucleus:cytoplasmic ratio? (N:C ratio)
 - Is the cytoplasm mature?
Benign or malignant nuclei (400x)?

#1 MALIGNANT

#2 BENIGN